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Abstract

In the present work, we derive from the GCM simulated model ECHAM4/OPYC3 the changes
of precipitation in Cameroon for the March-June season. Due to the presence of different climate
regimes, Self-Organising Feature Maps (SOFM) is used to group stations into homogeneous
rainfall regions. Then an Empirical Orthogonal Function (EOF) procedure, followed by Canonical
Correlation Analysis (CCA) are used to derive statistical relationships between the homogeneous
regions and large scale variables from the NCEP/NCAR reanalysis project. For the 2010-2049
horizon, the trace gas only and the trace gas plus sulphate integration induce changes, relative to
the 1951-1990 climatology, ranging locally from +44 to -10 % and from +36 to -9 % respectively.
Moreover the most positive changes are observed in the north and coast part of the country.

Empirisches Downscaling in den Tropen — mogliche Verdnderungen der kleinen
Regenzeit (Midrz—Juni) in Kamerun

Zusammenfassung

In dieser Arbeit werden zwei Versionen des [s92a-Szenarios (Treibhausgase, Treibhausgase mit
Aerosolen), die mit dem GCM ECHAM4/OPYC3 realisiert wurden, mittels empirischem
Downscaling auf Stationen projiziert. Dabei betrachten wir Kamerun wihrend der kleinen
Regenzeit (Madrz—Juni). Mit Self-Organising Feature Maps (SOFM), einer Technik der Neuronalen
Netze, werden die Stationen in einem ersten Schritt in homogene Niederschlagsregionen
zusammengefasst. Dann werden die Daten durch eine Hauptkomponentenanalyse (PCA) gefiltert.
Mittels kanonischer Korrelationsanalyse (CCA) wird schlieBlich ein statistisches Modell zum
Downscaling abgeleitet. In der ersten Hilfte des 21. Jahrhunderts finden wir in beiden Szenarien
Ab- (bis zu -10 %) und Zunahmen (bis zu +44 %). Die groten Zunahmen werden lokal an der
Kiiste und im Norden Kameruns erreicht.
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1 Introduction

Repeated drought and famine on the African continent in the last few decades have led
to a high awareness of the effect of climate variability and the potential danger of future
climate change (Nicholson 1993; Hulme 1992). The North of Cameroon being in the
Sahelian zone, was also hit, and the negative effects were felt in the entire country, with
some shortages in agricultural produce. Because agriculture in the country is entirely
rainfed and more than 90% of electricity is produced by hydropower plants, studies have
been undertaken to assess vulnerability to long term climate changes that are expected
to result from increase greenhouse gas (GHG) concentration in the atmosphere (IPCC
1996). These studies require projections of the possible modification of temporal and
spatial pattern of local rainfall, temperature, and other important climatic variables.

General circulation climate models (GCMs) are currently the most adapted tool for
these projections. However, due to their coarse resolution, 300km x 300km in the Tropics,
they cannot be used for projecting local-scale changes (Grotch and MacCracken 1991).
This is particularly true for surface climate variables needed for impact studies (Kamga
2000). Their resolution cannot be made much higher due to limitations in computing
power and in the understanding of all the processes involved. Furthermore it is estimated
that the skillful scale of GCMs is about 8 times the grid scale, therefore the GCM output
on smaller scales should not be interpreted (von Storch et al. 1993; Johannesson et al.
1995). Present GCM climate projections must be converted or downscaled to higher
regional or local resolutions. The leading techniques used are dynamical and statistical
empirical downscaling (Hewitson and Crane 1996).

In dynamical downscaling, a limited area model (LAM) of the area of interest is nested
in a GCM and evolves with it while using its output as boundary conditions (Giorgi 1990;
Giorgi et al. 1994). Because of their process-based approach, LAMs are expected to gen-
erate reliable regional results, since topography, land-use patterns and other geographical
features can be taken into account. In spite of their resolution being about 10 times higher
than that of GCMs, in some experiments, they failed to reproduce observed precipitation
statistics at spatial and temporal scales required for regional impact assessment (Giorgi
1991; Charles et al. 2001). Furthermore they are computationally expensive, and most
impact assessment research groups do not have LAM.

Another strategy to overcome the gap between large and local scales is the use of em-
pirical downscaling techniques (von Storch et al. 1993). It requires empirically linking
large scale circulation patterns or variables that are well resolved and projected by GCMs,
to the local climate variables of interest. A model representing the relationship between
large and local scale variables is built and calibrated with observations from the current

climate, and it is assumed that these relations will still hold under a changed climate.
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Various methods are used, among them, regression analysis (Matulla et al. 2002), canon-
ical correlation analysis (von Storch et al. 1993; Zorita et al. 1995) and neural network
(Olsson et al. 2001). Empirical methods offer an attractive approach at significantly lower
computing costs (Hewitson and Crane 1996) and it is the only way to assess the potential
impacts of climate change in the Central African region since there is no LAM running
in this area at the moment. However, the literature contains only a few examples of such
studies in tropical Africa.

In this study, we are interested in local patterns of rainfall under a changed climate
for Cameroon. Owing to its latitudinal extension, to its proximity of the Atlantic ocean
and to the variety of its relief, Cameroon has a very contrasted climate and the spatial
rainfall patterns are quite complex (Figure 2). Furthermore, the annual cycle of rainfall
is modulated by the South-North and North-South annual migration of the Intertropical
Convergence Zone (ITCZ), which marks the limit between the dry Sahelian Harmattan
winds and the humid South Westerly Monsoon flow (Janowiak 1988).

The different sources of variability resulting in this spatio-temporal diversity point to
the difficulties in identifying single large scale variables modulating precipitation in the
whole of Cameroon. Some regionalisation studies on a monthly basis have been done in
the area (Mkamkan et al. 1994) in order to access the sources of variability. Hence, we
decided to regionalise the precipitation data before downscaling. In such a situation, this
strategy can be benefit (Woth 2001).

2 Data

For model fitting of relations between large and local scale, we used monthly mean values
of relative and specific humidity, temperature, geopotential, zonal and meridional wind,
vorticity and divergence at four pressure levels (200, 500, 700, 850 hPa). Sea level pres-
sure and sea surface temperature are also examined. The present climate is represented
by the output of the NCEP/NCAR 50-year Reanalysis project, which uses a state-of-
the-art analysis/forecast system to perform data assimilation using past data from 1948
to 1998 (Kalnay et al. 1996; Kistler et al. 2001). The reanalysis uses a frozen mod-
ern global data assimilation system, and a data base as complete as possible. The data
assimilation (3D-Var) and the global spectral model are identical to the global system
implemented operationally at NCEP on January 1995, except that the horizontal resolu-
tion is T62, about 210 km. The data used, gridded in 2.5°Lon x 2.5°Lat cells, cover the
period from 1951 to 1990 and a sector from 20°W to 20°E and 20°S to 15°N (figure 1).
They were downloaded from the NOAA-CIRES Climate Diagnostics Centre web site at

http://www.cdc.noaa.gov/. On the local scale we use two different monthly precipitation



Table 1: List of the stations used and their geographical co-ordinates. See also Fig. 2 for
spatial locations.

label station name lon[°] lat[°’] alt[m]
1 MAROUA 14.25 10.45 423
2 KAELE 14.43 10.08 338
3 GUIDER 13.95  9.93 356
4 GAROUA 13.38  9.33 213
5 POLI 13.23  8.48 436
6 NGAOUNDERE 13.56 7.35 1113
7 MEIGANGA 14.33  7.16 1027
8 BANYO 11.81 6.75 1110
9 TIBATI 12.62  6.47 874
10 BETARE-OYA 14.08  5.60 805
11 YOKO 12.36 555 1031
12 BERTOUA 13.73  4.60 668
13 BATOURI 14.36  4.46 655
14 YOKADOUMA 15.10  3.52 640
15 LOMIE 13.61  3.16 640
16 ABONG-MBANG 13.20 3.96 693

17 NANGA-EBOKO 12.37 4.65 624
18 AKONOLINGA 1225 3.77 671
19 SANGMELIMA 11.98  2.93 713
20 AMBAM 11.23  2.38 602
21 EBOLOWA 11.17  2.90 603
22 KRIBI 9.90 293 13
23 ESEKA 10.73  3.62 228
24 YAOUNDE 11.51  3.83 760
25 BAFIA 11.16  4.73 501
26 NGAMBE 10.60  4.20 650
27 EDEA 10.13  3.80 32
28 DOUALA-OBS. 9.70  4.01 10
29 NKONGSAMBA 9.93 495 816
30 BAFOUSSAM 10.43  5.48 1460
31 KOUNDJA 10.75  5.65 1217
32 BAMENDA 10.18  5.93 1608
33 MANFE 9.30  5.75 126

datasets. One obtained directly from the National Meteorological Service of Cameroon
(NMSC), the other from the Food and Agriculture Organisation (FAO) of the United
Nations. Using both fragmentary sets, it was possible to extract 33 station records, with
sufficient data for the period from 1951 to 1990, with at most 2% of missings (Figure 2).
In this study, we are interested in rainfall totals for the March-April-May-June (MAM.J)



period. The behaviour of large scale variables under climate change is simulated by the
Max Planck Institute (MPI) fiir Meteorologie coupled atmosphere-ocean GCM model
ECHAM4/OPYC3 (Roeckner et al. 1996), which is known to give a good representation
of the climate of the region (Kamga 2000).

In the ECHAM4 experiment, performed in 1995, the horizontal resolution of the at-
mospheric model was 5.6° latitude by 5.6° longitude and the ocean model was 2.8° by
2.8°. Following an initialisation period of historical greenhouse gas forcing from 1860 to
1990, three simulations were done: (i) a 300-year control simulation with GHG concen-
trations kept at 1990 levels; (ii) a ’greenhouse gas only’ forced experiment using a 1%
percent annual increase in forcing from 1990 to 2099; and (iii) a ’greenhouse gas plus
sulphate aerosol” integration (COy + SOy aerosols) from 1990 to 2049. The 1% increase is
in accordance with the 1S92a emission scenario of the Intergovernmental Panel on Climate
Change (IPCC 1996). The output data were interpolated to the NCEP/NCAR 2.5° x 2.5°

reanalysis grid.
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Figure 1: Local area of interest (Cameroon) and the window used for large scale variables

3 Regionalisation of precipitation - Self-Organising
Feature Map

Tropical rainfall is generated by a wide variety of mechanisms, including monsoon, coastal
and upper troughs, tropical cyclones, convective and advective systems, etc. Several
studies have been carried out in various regions of Africa in order to link atmospheric

variables to local rainfall. In Tanzania, Kabanda and Jury (1999) found that for the
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period from October to December rainfall is linked to wind indices in the Indian ocean
and the ENSO phase, while for the period from March to May, only rainfall in May is
linked to the all-India rainfall index (Zorita and Tilya 2002). In West Africa, Sahelian

rainfall was linked to sea surface temperature (Thiaw et al. 1999).
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Figure 2: Stations use in this study. The panels on the left and right columns show
boxplots of Monthly rainfall typical of various annual regimes in the area. Note that
Ngambe (26) and Eeska (23), two neighbouring stations, quite different annual cycles

while Betare-Oya (10) shows an intermediate situation

In Central Africa, the Intertropical Convergence Zone (ITCZ) is one of the phenomena
affecting precipitation. In Cameroon the Adamaoua plateau and the Cameroon mountain
(4100m) also affects its spatial distribution. Figure 2 shows examples of climate regimes
in the region. The wet equatorial climate with four seasons (e.g. Eseka [23]), the dry
Sahelian climate with two seasons (e.g. Maroua [1]) and intermediate climates (e.g. Be-
taré-Oya [10]) are present. Various mechanisms acting together or independently cause
this complexity. From this point of view, it seems reasonable to group stations with sim-
ilar properties before linking them to the general circulation. Thus different atmospheric
variables can be identified as sources of rainfall variability in different regions. Among
the varieties of tools available for rainfall regionalisation (e.g. cluster analysis or rotated
empirical orthogonal functions), we use Self-Organising Feature Map (SOFM) because of
its flexibility.

SOFMs (Kohonen 1989) are a subgroup of artificial neural networks (ANNs) used to
extract significant patterns or features in the input data (Haykin 1994). This methodology
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provides a mechanism for visualising any distribution of data on a two-dimensional map
while preserving the statistical properties of the input distribution (Laha and Pal 2001).
In the climatology domain, SOFMs have been used for classification purposes (Malmgren
and Winter 1999; Cavazos 2000) and can achieve the same results as obtained by other
methods. Hewitson and Crane (2002) recently used SOFM to describe changes of syn-
optic circulation over time and discuss in detail its performances and its utility in the

climatology domain.

3.1 Application and Results of the SOFM Methodology

The architecture of SOFM in 2 dimensions consists of one output layer of my X ng nodes
and one single input layer with n nodes. Each node of the output layer is connected to
all nodes of the input layer through the connection weights. The input data are arranged
as a matrix of dimensions m X n, where m and n are the number of observations and
variables respectively. These data are then mapped through an iterative process onto the
output layer. Each iteration consists of randomly selecting an observation (input vector),
finding its “best matching” node (the one having the smallest Euclidean distance to the
input vector) and updating the connection weights not only for the best matching node,
but also for nodes in its vicinity. The updating formula is a function of the learning rate
which decreases continually during the iterations. At the end of the process, the output
nodes are arranged so that observations that share similarities in the input space are
mapped either through the same node or through two nodes close to each other in the
output layer. Observations whose mapped nodes represent a dense area in the output
layer can be interpreted as a group of data with some similar properties.

The interpretation of SOFM clusters strongly depends on the way in which the input
vector is passed to the network. In the case where m denotes the length of the time
series and n the number of grid points or stations, the similarity will be looked for in
the time-domain, resulting in the clusters indicating various stages of evolution through
the time. On the other hand, if the transposed of the data matrix is used, the similarity
will be in the grid points or station-space, leading to clusters of stations or grid points in
which the time series varies in a similar way. Our data were analysed in the latter mode.

The data we used are standardised seasonal anomalies of monthly precipitation from
1951 to 1990 recorded at 33 stations. Application of SOFM to the data matrix leads to
assigning the various stations to the groups C1(x), C2(o) and C3(+) displayed in Figure
3. Stations in C1 are located in the North and West of the domain and are characterised
by a unimodal annual cycle. In view of the high contrast in amounts of rainfall, altitude
and latitude between them, the probable linkage here is the type of circulation producing

precipitation. This point will become clearer later. Stations in C3, located in the South
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have a clear minimun of rainfall in May, when the Intertropical Front (ITF) is nearing
its northernmost position, and the area is zone D of the ITCZ (Hamilton and Archibald

1945). Stations in C2 are in a transition zone between the preceding two.

8 10 12 14 16
longitude

Figure 3: Clusters found by SOFM based on standardised anomalies for the period 1951-
1990. C1 (x), C2 (o) and C3 (+).

4 Statistical Downscaling - Canonical Correlation Anal-
ysis

Downscaling in general is based on the assumption that regional climate is conditioned by
climate on larger scales. Statistical Downscaling utilises observations in order to derive
relationships between different scales. These relationships can be used to obtain small
scale realisations from large scale climate change scenarios provided by GCMs. We use
Canonical Correlation Analysis (CCA), which attempts to find optimally coupled anomaly
patterns on both scales (von Storch and Zwiers 1999). CCA has found wide application
to precipitation modelling: von Storch et al. (1993) apply CCA on winter Iberian rainfall;
Gyalistras et al. (1994) not only on precipitation at some stations in Switzerland, but
also on several other local meteorological elements as well; Busuioc and von Storch (1996)

apply it on monthly Romanian precipitation amounts.
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4.1 Methodology

The statistical downscaling model is constructed in two steps: First, we analyse the data
on both scales using Empirical Orthogonal Function (EOF) Analysis (Lorenz 1956; Rich-
man 1986). The aim of this step is to discriminate between the the signal of interest and
the noise. This allows to obtain the most important modes of variability and to substan-
tially reduces the data dimensionality. Secondly CCA is used to study the correlation
structure between local precipitation and two large scale meteorological variables during
the small rainy season, March-April-May-June (MAMJ) in Cameroon. This step is done
separately for each region found by SOFM.

4.2 Application and Results
4.2.1 Model building

On both scales, the number of EOFs retained for further analysis did not exceed eight
and was such that at least 80% of the total variance are retained. To detect atmospheric
variables which have an influence on rainfall variability all possible combinations of two
different large scale fields, as listed in the data section, were used as predictors in CCA.

In order to test the numerous models three validation experiments named A, B and
C were constructed. In experiment A the (EOF-CCA) model is calibrated and validated
from 1951 to 1990. In B the model is calibrated from 1951 to 1980 and validated over
the whole period and in C, the calibration and the validation periods are 1951-1980
and 1961-1990, respectively. This choice is guided by the shortlength (40 years) of the
time series. The experiments are carried out separately for each of the homogeneous
regions found by SOFM (see Figure 3) and for the region as a whole (denoted ALL).
To assess the performance of the various models, we evaluate the Pearson correlation
coefficient r between the estimated and observed time series and test its significance at
the 95% significance level. The best performing models are selected to downscale the
GCM scenarios.

The skill of a particular predictor combination is measured by the mean of 2 and the
percentage of stations per region with significant r. In the following the percentage of
stations with a significant r will be abbreviated PSR. Table 2 displays the predictors,
obtained results from the previously described selection process, and their 72 statistics for
the small rainy season in Cameroon. The first column indicates the experiment, the second
one the predictor-combination, the third the region, followed by columns characterising the
distribution of 2. The last column displays the percentage of stations whose correlations
are significant at the 95% level (PSR > 95%).
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Figure 4: First CCA patterns associated with MAMJ rainfall for the SOFM defined
homogeneous regions. The values are standardised. The canonical correlations between
the first time coefficients are 0.88 for C1 a), 0.73 for C2 a) and 0.76 for C3 c¢). The names

of the variables are indicated above the pictures
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Table 2: Statistic of squared correlation between observed and downscaled precipitation
for MAMJ. RH and SH denotes relative and specific humidity respectively, u and v the
zonal and meridional winds, divV and rotV the wind divergence and vorticity, while the
indices 8, 7, 5 represent pressure levels 850, 700 and 500hPa respectively. PSR stands for

percentage of stations with a significant r.

Squared correlation r?

Exp. | Predictors Region | min. max. mean std. | PSR > 95%
RHg+wvg C1 0.23 0.51 0.39 0.09 100%
SH7+us C2 0.19 0.35 0.24 0.07 1%

A SHs+divVy C3 0.13 045 0.29 0.09 100%
SHs+rotVs | ALL | 0.11 048 0.27 0.11 91%
RHg+wvs C1 0.15 0.49 031 0.11 100%
SH7+us C2 0.14 0.27 0.20 0.07 1%

B SH5;+div V5, C3 0.16 0.50 0.31 0.11 100%
SHs+rotVs | ALL | 0.10 049 0.27 0.11 91%
RHg+vs C1 0.15 0.38 0.26 0.08 85%
SH7+us C2 0.14 0.28 0.22 0.06 86%

¢ SHs+div V5 C3 0.13 0.38 0.25 0.08 7%
SHs+rotVs | ALL | 0.14 044 0.24 0.09 73%

4.2.2 Results and discussions

Figure 4 shows the first CCA patterns for each region. The CCA rainfall pattern in
region C1 explains 37% of total variance. For comparison, the first rainfall EOF in C1
(not shown) explains 43% of total variance.

On the large scale (Fig. 4a) the area is under the strong influence of a positive poles
of relative humidity and northerly wind located around 5°N westwards of Cameroon,
and on the 850hPa level. The meridional wind intensity increases northwards up to
5°N, then quickly decreases and is reversed around 13°N. The positive pole of relative
humidity can be interpreted as persistent presence of humid airmasses advected from
the Atlantic ocean. Hence, deep convection producing precipitation in C1 results from
moisture advection by the monsoonal flow. This possible connection was further explored
by means of a composite analysis involving local precipitation, large scale relative humidity
and meridional wind. The upper two panel-rows in Figure 5 show the result of the analysis.
COMPOSITE+ is for the large scale composites made up of years having exceptionally
high precipitation totals during the SRS. COMPOSITE- corresponds to the opposite

14



situation, i.e. years having considerably lesser precipitation sums during the SRS. The
composite analysis supports the interpretation given above, as the composites related to
high precipitation are similar to those related to low precipitation but with a reversed
sign.

In C3 a situation comparable to that in C1 is found. The CCA (Fig. 4c) and COMPOS-
ITE patterns of specific humidity at 500hPa and the wind divergence at 700hPa (Fig. 5
lower panels) show many similarities. In COMPOSITE+ there is wind convergence around
5°N and relative humidity has a positive pole above Cameroon. This combination feeds
convection and can explain enhanced precipitation recorded in C3. The COMPOSITE-,
which is connected to drier episodes, show positive divergence around the region of inter-
est. Altogether these observations point to convective phenomenon as source of rain in
this area.

The CCA patterns of specific humidity at 700hPa and zonal wind at 500hPa (Fig. 4b)
show a complex situation in the case of C2 whit a south-north dipole for zonal wind and a
east-west dipole for specific humidity around the Equator. These patterns do not allow a
simple interpretations and no further investigation has been made. Furthermore, findings
of Table 2 report that rainfall in C2 is insufficiently linked to large scale circulations.

In all cases it can be observed that the atmospheric signal influencing precipitation in
Cameroon acts around 5°N.

The CCA models as calibrated in experiment A was used to downscale rainfall under
the present climate. Figure 6 displays a direct comparison between observed and down-
scaled rainfall anomalies for each region. It appear that the CCA-models captures the
variability of precipitation in C1 and C3 relatively well, although extreme values in C3
are underestimated. However, the trend is well reproduced in both regions. Again it can
be seen that there are difficulties in C2 where the results are poorer.

To assess the benefit of regionalising precipitation data using SOFM before downscaling

we used the explained variance 1 — <)§;(§§>2 to compare the performance of the models run

with and without regionalisation. X and X are the observed and downscaled samples,
respectively.

Table 3 shows the explained variance averaged over each region. For this comparison
the number of EOFs retained is 8 for the large scale field and 3 for local rainfall in C2
as well as 6 in C1, C1&2, C3 and C2&3 respectively. The most striking features are: (i)
The explained variances in C1 and C3 are higher than in ALL. This remains also valid
when C2 is added to C1 or C3. (ii) The models calibrated for the different regions explain
always a higher fraction of variance, than the models calibrated for the whole Cameroon.

So we conclude that regionalisation of rainfall data improves the model performance in

regions C1 and C3 the, but is of no help in region C2. Moreover C2 could be interpreted
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Figure 5: Composite patterns of predictor variables for region C1 (upper four panel) and
C3 (lower four panel). COMPOSITE+4 (COMPOSITE-) is the mean state made up of

the six highest (lowest) values of the canonical time series.
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as a border-region between C1 and C3. Hence, local precipitation is better represented

when running CCA separately for each region found by SOFM analysis.
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Figure 6: Time series of MAMJ rainfall averaged over the homogeneous regions a) C1, b)

C2 and ¢) C3. (Black bars, observed; white bars estimated from experiment A)

Table 3: Model performance with regionalisation C1, C2, and C3 and without (All). The
values are explained variance averaged over each region and A, B, C are the experiments
performed (see text). Note: Ca in ALL denotes the model perfomance in region « based

on the model fitted for ALL.

Cl | Cl&2 C2 C3 | C2&3 | ALL
Exp | CL &2 L tinaL | 92 Jimacn | @ | 293 i ALL | in ALL
A [039] 031 | 036 | 029 |017| 016 |027| 022 | 025 | 021 |023
B |030] 025 | 021 | 025 |0.13] 0.13 |030] 023 | 027 | 022 | 022
C |022] 019 | 022 | 018 |020] 009 |018]| 017 | 017 | 016 | 0.17

4.2.3 Downscaled local rainfall under climate change

The transfer functions derived from EOF-CCA approach (as previously shown) are used

to assess local precipitation changes for a future period.

The GCM experiments used are the ECHAM4/OPYC3 (Roeckner et al.
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1996) as




described earlier. Two [S92a scenarios are investigated; the ’greenhouse gas only’ run for
the period 2011 to 2050 and the ’greenhouse gas plus sulphate aerosols’ run for 2010 to
2049. The anomalies are derived by subtracting climatological mean values, 1951-1990,
calculated from the control experiment, from the effective values of the scenario runs. The
anomalies are further normalised by the NCEP/NCAR reanalysis data standard deviation
for 1951-1990. The models used were calibrated with the set-up described in experiment
A. Table 4 shows (in %)the differences between the climatological values for the observed
period 1951-1990 and the projection values for the periods 2011-2050 (COs) as well as
2010-2049 (COy + SOy).

Table 4: Statistic of downscaled local rainfall changes derived from a GCM experiment
under IPCC IS92a scenario with COy only and CO5 + SO4. Changes are expressed in
percentage relative to the observed period 1951-1990.

(COy) (COz + SOy)
Region . .
min max mean std | min max mean std
C1 4.00 4391 1860 11.97| 3.32 35.04 14.37 9.29
C2 -0.84 122 -399 349 |-824 0.89 -3.38 2.82
C3 -1.58 078 -0.09 0.63|-1.26 148 0.43 0.68

The statistics describe each region separately. Figure 7 shows the spatial distribution of
precipitation changes induced by the COy and the CO4 + SOy scenarios. The changes are
expressed in percentage relative to the observed period 1951-1990. The largest changes
appear in region C1 (up to 44% increase). The rest of the country (i.e. in C2 and C3),
shows both positive (increase) and negative (decrease) precipitation changes ranging from
-10 to 10%. The results induced by the CO, + SOy scenario look quite similar to those of
the CO3 only scenario with differences in magnitude up to 8%.

The expected enhancement of precipitation in C1 could induced positive repercussions
on the monthly discharge of the Upper Benue River in north of Cameroon with a di-
rect impacts on agricultural and human activities (Kamga 2001). Overall, most of these
changes may not be significant in view of GCM and downcaling models uncertainty, and

furthermore, would be within current climate variability levels.

5 Conclusion

The results of Self-Organising Feature Map (SOFM) indicate that March-June precipita-
tion (SRS) is subdivided into three groups. These groups are linked to different modes of
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Figure 7: Downscaled local rainfall changes derived from a GCM experiment under IPCC
[S92a scenario: a) CO; only; b COy + SO4. Changes are expressed in percentage relative
to the observed period 1951-1990.

variability, which might be related to different atmospheric mechanisms. Results of the
EOF and CCA techniques show that in part of the study domain relative humidity and
meridional wind at 850hPa influence the local precipitation during the SRS. A composite
analysis suggests that this might be due to advective processes. In the southern part of
Cameroon, the combination of 500hPa specific humidity and 700hPa wind divergence is
linked best to the variability of local precipitation. In this case the composite analysis
indicate a connection between rainfall and convective phenomena. Projection of future
precipitation based on two IS92a emission scenarios as simulated by ECHAM4/OPYC3
indicate trace gas only and trace gas plus sulphate integration induce changes, relative
to the 1951-1990 climatology, ranging locally from +44 to -10% and from +36 to -9%,
respectively.

This study demonstrates the possibility of downscaling of local scale climate change
scenarios from GCMs in Cameroon. The presented approach offers a possible strategy to
produce these scenarios at low computing costs. Cameroon’s climate runs from humid-
equatorial close to the Atlantic ocean to arid-tropical in the vicinity of the lake Chad,
in the Sahelian zone. Hence the achieved results may be useful for neighbouring area in
Central Africa.

19



6 Acknowledgments

We thank the DKRZ, the FAO and the NMSC for providing data. Moreover we would
like to thank E. Zorita, S. Wagner and C. Nunneri for fruitful discussions that help to
improve the manuscript. E. K. Penlap would further thanks the German Co-operation
Agency DAAD, for granting him a fellowship and Prof. Hans von Storch for welcoming

him in his Laboratory.

20



References

Busuioc, A., and H. von Storch, 1996: Changes in the winter precipitation in Romania

and its relation to the large-scale circulation. Tellus, 48 A, 538-552.

Cavazos, T., 2000: Using Self-organizing maps to investigate extreme climate events:

An application to wintertime precipitation in the balkans. J. Climate, 1718-1732.
Charles, S.P., B.C. Bates, S.J. Crimp, and J.P. Hughes, 2001: Statistical Downscal-

ing of daily, multi-site, precipitation in tropical and sub-tropical climates. In: §th

International Meeting on Statistical Climatology. University of Liineburg, Germany.

Giorgi, F., 1990: Simulation of regional climate using a limited area model nested in a

general circulation model. J. Climate, 3, 941-963.

Giorgi, F., 1991: Sensitivity of simulated summertime precipitation over the Western
United States to different physics parameterizations. Mon. Wea. Rev., 119, 2870—
2888.

Giorgi, F., C. Shields Brodeur, and G.T. Bates, 1994: Regional climate-change scenarios
over the United-States produced with a nested regional climate model. J. Climate, 7,
375-399.

Grotch, S.L., and M.C. MacCracken, 1991: The use of general circulation models to
predict regional climatic change. J. Climate, 4, 286-303.

Gyalistras, D., H. von Storch, A. Fischlin, and M. Beniston, 1994: Linking GCM-
simulated climatic changes to ecosystem models: case studies of statistical down-
scaling in the Alps. Clim. Res., 4, 167-189.

Hamilton, R.A., and J.W. Archibald, 1945: Meteorology of Nigeria and adjacent terri-
tory. Quart. J. Roy. Meteor. Soc., 71, 231-264.

Haykin, S., 1994: Neural Networks: A Comprehensive Foundation. Macmillan College
Publishing Company.
Hewitson, B., and R. Crane, 1996: Climate downscaling: techniques and application.

Clim. Res., 7, 85-95.

Hewitson, B.C., and R.G. Crane, 2002: Self-organizing mags: applications to synoptic
climatology. Clim. Res., 22, 13-26.

Hulme, M., 1992: Rainfall changes in Africa - 1931-1960 to 1961-1990. Int. J. Clima-
tol., 7, 685-699.

IPCC, 1996: Climate Change 1995 - The Science of Climate Change; Contribution of
Working Group I to the Second Assessment Report of the Intergovernmental Panel
on Climate Change. Cambridge University Press, 572 pp.

21



Janowiak, E.J.; 1988: An Investigation of Interannual Rainfall Variability in Africa. J.
Climate, 1, 240-255.

Johannesson, T., T. Jonsson, E. Kaillen, and E. Kaas, 1995: Climate change scenarios
for the nordic countries. Clim. Res., 5, 181 — 195.

Kabanda, T.A., and M.R. Jury, 1999: Inter-annual variability of short rains over north-
ern Tanzania. Clim. Res., 13, 231-241.

Kalnay, E., M. Kanamitsu, R. Kistler, W. Collins, D. Deaven, L. Gandin,
M. Iredell, S. Saha, G. White, J. Woollen, Y. Zhu, M. Chelliah, W. Ebisuzaki,
W. Higgins, J. Janowiak, K.C. Mo, C. Ropelewski, J. Wang, A. Leetmaa,
R. Reynolds, R. Jenne, and D. Joseph, 1996: The NCEP/NCAR reanalysis project.
Bull. Amer. Meteor.Soc, 77, 437-471.

Kamga, F.M., 2000: Validation of general circulation climate models and projections of
temperature and rainfall changes in Cameroon and some of its neighbouring areas.
Theor. Appl. Climatol., 67, 97-107.

Kamga, F.M., 2001: Impact of greenhouse gas induced climate change on the runoff of
the Upper Benue River (Cameroon). Journal of Hydrology, 252, 145-156.

Kistler, R., E. Kalnay, W. Collins, S. Saha, G. White, J. Woollen, M. Chelliah,
W. Ebisuzaki, M. Kanamitsu, V. Kousky, H. van den Dool, R. Jenne, and M. Fior-
ino, 2001: The NCEP-NCAR 50-Yaer Reanalysis: Monthly Mean CD-ROM and
Documentation. Bull. Amer. Meteor. Soc., 82, 247-267.

Kohonen, T., 1989: Sel-Organization and associative memory (3 ed.). Springer-Verlag.

Laha, A., and N.R. Pal, 2001: Dynamic generation of prototypes with self-organizing
feature maps for classifier design. Pattern Recognition, 34, 315-321.

Lorenz, E.N., 1956: Empirical orthogonal functions and statistic weather prediction.
Sci. Rept. No. 1, Statistical Forecasting Project, Mass. Inst. Tech., Dept. of Meteo-
rology, Cambridge, Mass., 49pp.

Malmgren, B.A., and A. Winter, 1999: Climate zonation in Puerto Rico based on
principal components analysis and an artificial neural network. J. Climate, 12, 977—
985.

Matulla, C., N. Groll, H. Kromp-Kolb, H. Scheifinger, M.J. Lexer, and M. Widmann,
2002: Climate change scenarios at Austrian National Forest Inventory sites. Clim.
Res., 22, 161-173.

Mkamkan, K.F., M. Tsalefac, and B.C. Mbane, 1994: Variabilité Pluviométrique sur

le Territoire Camerounais: Essai de Régionalisation a Partir des Cumuls Mensuels

22



et du Cycle Annuel. Publications de I’Association Internationale de Climatologie, 7,
439-446.

Nicholson, S.E., 1993: An Overview of African Rainfall Fluctuation of the Last Decade.
J. Climate, 6, 1463—-1466.

Olsson, J., C.B. Uvo, and K. Jinno, 2001: Statistical Atmospheric Downscaling of
Short-Term Extreme Rainfall By Neural Networks. Phys. Chem. Earth (B), 26,
695-700.

Richman, M.B., 1986: Rotation of principal components. Int. J. Climatol., 6, 293-335.
Roeckner, E., J. Oberhuber, A. Bacher, M. Christoph, and I. Kirchner, 1996: ENSO

varability and atmospheric response in a global coupled atmosphere-ocean GCM.
Climate Dyn., 12, 737-745.

Thiaw, W.M., G.A. Barnston, and V. Kumar, 1999: Predictions of African rainfall on
the seasonal timescale. J. Geophys. Res., 104, 31589-31597.

von Storch, H., E. Zorita, and U. Cubasch, 1993: Downscaling of global climate change
estimates to regional scales: An application to iberian rainfall in wintertime. J.
Climate, 6, 11161 — 11171.

von Storch, H., and F. Zwiers, 1999: Statistical Analysis in Climate Research. Cam-
bridge University Press, 528 pp.

Woth, K., 2001: Abschatzung einer zukiinftigen Niederschlagsentwicklung mit statis-
tischen Methoden unter Einbezug raumlicher Differenzierungsverfahren am Beispiel
des siidwesteuropdischen Raums. Master’s thesis, GKSS-Report 2001/28 - Univer-
sity of Trier, 101 pp.

Zorita, E., J.P. Hughes, D.P. Lettemaier, and H. von Storch, 1995: Stochastic charac-
terization of regional circulation patterns for climate model diagnosis and estimation
of local precipitation. J. Climate, 8, 1023-1042.

Zorita, E., and F.F. Tilya, 2002: Rainfall variability in Northern Tanzania in the March-
May season (long rains) and its links to large-scale climate forcing. Clim. Res., 20,
31-40.

23



	2003_11_Titelei.pdf
	
	
	
	
	
	

	e:\DigiPath\Decomp\2003_11_Inhalt.pdf(1).rdo
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	




