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Abstract

In recent years it became increasingly clear that phenological data are a powerful tool for the
investigation of the connection between ecosystems and climate. Using biosphere phenomena,
the response of ecosystems to human activities can be assessed.

In this study we explore two empirical downscaling techniques that linklarge scale atmospheric
variables to local scale phenological occurrence data and, for comparative purposes, the local
scale temperature.

The results of this study indicate time series of biospheric variables are very compatible with
the needs of empirical downscaling that was originally developed of local scale atmospheric
variables.

Anwendung zweier empirischer Downscaling-Methoden auf phdnologische
Zeitreihen in Zentral-Europa

Zusammenfassung

In den letzten Jahren ist die Bedeutung phéanologischer Daten zur Untersuchung der Beziehung
zwischen atmosphirischen Feldern und Okosystemen zunehmend erkannt worden.

Diese Studie untersucht die Fahigkeit zweier empirischer Downscaling-Methoden, den Zusammen-
hang zwischen grossskaligen atmosphérischen Feldern und den Eintrittsdaten phdnologischer
Phasen sowie zum Vergleich der Temperatur, auf der regionalen Skala zu beschreiben.

Die Ergebnisse bestétigen diese Fihigkeit. Insbesondere die kanonische Korrelationsanalyse ist
als gut geeignet einzustufen, um etwa Auswirkungen von Szenarien auf untersuchte Pflanzen
direkt abschitzen zu kdnnen.

Manuscript received / Manuskripteingang in TDB: 12. Mdrz 2003






1 Introduction

The effect of a future climate with possibly higher temperatures and changed precipita-
tion patterns on the biosphere constitutes one of the great concerns of the climate impact
community. Apart from the question of the reliability of the General Circulation Mod-
els (GCMs) scenarios for the future climate, the scale problem is not yet satisfactorily
solved. Although the spatial resolution of the GCMs is continuously being enhanced,
downscaling of atmospheric information from GCM scale to regional scale and individual
points is still necessary to provide input for ecological models, like forest gap models or
biogeochemical models. For this purpose a number of downscaling methods have been
developed in recent years, which link the large scale atmospheric circulation with the
local-scale atmosphere (von Storch et al. 2000).

There are two principal strategies applied to connect large-scale atmospheric vari-
ables with local scale impact phenomena. Via dynamical or statistical downscaling large
scale atmospheric information is transferred to local scale atmospheric variables, which
describe the biophysical environment and represents the input for models simulating bi-
ological processes, for instance, as for forest gap models (e.g. Lexer et al. 2002; Price
et al. 2001; Bolliger et al. 2000) or for phenological models (Menzel 1997; Osborne et al.
2000).

If a local scale biosphere phenomenon and large scale atmospheric variables can be
linked directly via an empirical relationship, statistical downscaling techniques might be
applied without the detour via models between the local scale biosphere phenomenon
and the local scale atmosphere. There are a number of biospheric variables, which,
for instance, reveal a strong link with the North Atlantic Oscillation phenomenon (c.f.
Post and Stenseth 1999; Chmielewski and Rotzer 2001; Straile 2002; Ottersen et al.
2001; Scheifinger et al. 2002) Such biospheric variables should particularly be suited for
statistical downscaling procedures (e.g. Heyen et al. 1998; Kroncke et al. 1998; Maak
and von Storch 1997).

For that purpose a set of macro-scale variables is selected, which represent the vari-
ability of the large-scale field distribution. These are linked with the micro-scale variables
by means of an empirical relationship, which is derived between observations on both
scales. Empirical Orthogonal Functions (EOFs) of 2D fields of atmospheric variables over
a certain area are frequently used to represent the main fraction of the field variance.
Hence, their time coefficients (Principal Components, PCs) often serve as predictors in
empirical relationships (e.g. Hewitson and Crane 1992; Matulla et al. 2002). However,



there are a number of statistical methods at hand to relate both sets of variables, for
example, Canonical Correlation Analysis (CCA) or multiple linear regression (MLR).
Assuming the validity of the empirical relation derived from instrumental time series
also for the future climate, time series of micro-scale variables are calculated from the
difference of the GCM scenario run for the future climate and the GCM control run for
the present climate. The downscaled anomalies are then added to the presently observed
mean values in order to provide an assessment of possible future climate conditions. Al-
though the methods developed here can be applied to scenarios of future climate, this
investigation is restricted to the derivation and evaluation of empirical transfer functions.

In this study Empirical Orthogonal Functions (EOFs) of 2D fields of atmospheric
variables serve as macro-scale variables, which are related to local scale phenological
observations and, for comparison purposes, also to temperature by MLR and CCA. 17
phenological phases throughout the season serve as local-scale variables, thus covering
the complete vegetation cycle. The few similar studies have so far been restricted to
certain phases (e.g. Maak and von Storch 1997; Chmielewski and Rétzer 2001).

2 Data

On the large scale monthly fields of atmospheric variables (Table 1) over an area from
50°W to 30°E and 35° to 65°N are used. The dataset spans the period from 1951 to 1998
and is provided by the National Center for Atmospheric Research (NCAR) reanalysis
project (Kalnay et al. 1996).

Table 1: List of large scale atmospheric variables.

Nr. | variable pressure level

1 Relative humidity 850, 700, 500 hPa

2 Specific humidity 850, 700, 500 hPa

3 u and v components of the wind | 850, 700, 500, 200 hPa
4 Temperature 850, 700, 500, 200 hPa
5 Geopotential height 850, 700, 500, 200 hPa
6 Vorticity 850, 700, 500, 200 hPa
7 Divergence 850, 700, 500, 200 hPa
8 Sea level pressure

9 relative topography 700-850hPa

Monthly North Atlantic Oscillation (NAO) time series are from the data set publicly



available from the Climate Research Unit in the UK (Jones et al. 1997).

On the local scale observations of 17 phenological phases (see Table 2) are available
from Germany, Austria, Switzerland and Slovenia (Figure 1) for the time period 1951
1998, collected for the EU funded project POSITIVE (www.forst.tu-muenchen.de/EXT-
/LST/METEO/positive). The data have been checked for consistency and outliers with
methods as described in Scheifinger et al. 2002. In order to facilitate further analysis,
the observations have been interpolated to a 1°x1° grid, covering much of Germany,

Switzerland and Austria (Figure 1).
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Figure 1: 1°x1° grid of the phenological observation area. Phenological time series have been
interpolated to this grid.

The downscaling procedure is also applied to time series of monthly temperature
deviations for comparison purposes. They originate from the ALPCLIM project (Envi-
ronmental and Climate Records from High Elevation Alpine Glaciers funded by the Eu-
ropean Commission, http://crusoe.iup.uni-heidelberg.de/glacis/ALPCLIM), where long
instrumental temperature time series from Alpine countries have been collected (B6hm
et al. 2001). In this work monthly anomaly series are used, referenced to the monthly
means of the time period 1901-1998, interpolated to a 1°x1° grid and overlapping with
the POSITIVE grid (Figure 1).



Table 2: List of phenological phases and their mean month of occurrence in Central Europe.

Nr. | Phase month
1 Corylus avellana beginning of flowering March
2 Galanthus nivalis beginning of flowering March
3 Tussilago farfara beginning of flowering March
4 Anemone nemorosa beginning of flowering April
5 Lariz decidua leaf unfolding April
6 Betula pendula leaf unfolding April
7 Aesculus hippocastanum leaf unfolding April
8 Tarazacum officinale beginning of flowering April
9 Fagus sylvatica leaf unfolding April
10 | Picea abies May sprouting May

11 | Aesculus hippocastanum beginning of flowering | May

12 | Syringa vulgaris beginning of flowering May

13 | Sambucus nigra beginning of flowering June

14 | Sambucus nigra ripe fruit September
15 | Aesculus hippocastanum autumn colouring October
16 | Betula pendula autumn colouring October
17 | Fagus sylvatica autumn colouring October




3 Methods

3.1 Multiple linear regression

Multiple regression is a widely applied transfer function to link macro with micro scale
variables at individual points (e.g. Hewitson and Crane 1992). The empirical relationship
between the PCs (X;) of the macro scale variables and time series of the micro scale

variables (Y;) is described by following multiple regression model:

N
Yie="bjo+ Y bixXes
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whereby the b; , represent the regression coefficients, j is the index for the grid point,
t for the time step and k refers to the independent variable.

After subtracting the mean seasonal variation from the time series of the atmospheric
fields, the EOFs are calculated for each of the 12 months. In order to enlarge the sample
size and hence obtain less ambivalent results (von Storch and Hannoschock 1985), the
data of the previous and following months have been added to support the analysis,
resulting in a moving data window spanning 3 months. The methods for deriving the
EOFs and the time expansion coefficients (PCs) are described in detail in von Storch
and Zwiers (1999).

In order to apply the regression model to phenological data, phenological occurrence
dates, which are given in yeardays, have to be related to a certain month. This is achieved
by taking the 48 year (1951-1998) mean occurrence date of the phenological phase at
each individual grid point. Phases occur mainly in March, April, May, June, August,
September and October. As independent variables the time expansion coefficients of the
first 5 EOFs of temperature in 850 hPa and geopotential height in 850 hPa are selected
as predictors for the MLR model. Plant phenological events are related to temperature
sums accumulated over a longer time period preceding the phenological event (Menzel
1997). Hence, it was decided that two months — the month of occurrence and the
previous month — should enter the analysis, resulting in 20 independent variables for the
regression model. The stepwise multiple regression (IMSL routine RBEST) procedure
assists in determining the best regression model for each group of independent variables.
For comparison purposes, monthly temperature time series have been regressed with the

same set of independent variables.



The first and second EOF of the sea level pressure field (SLP) are highly correlated
with the NAO index (e.g. Fyfe et al. 1999). Consequently a set of EOFs from one or
two atmospheric variables, like those mentioned above, should describe a higher fraction
of the atmospheric variability over the North Atlantic and Europe than the NAO index
alone. Therefore one would expect, for instance, the MLR model based on such EOFs
and their associated PCs to explain a higher fraction of the variance of the local scale
variables. Figure 2 compares the MLR skill using the NAO index (Jones et al. 1997) and
the above mentioned PCs. Both models have been calibrated over the period 1951-1998.
The use of PCs mainly improves the modeling of early spring and autumn phases and

to a lesser degree that of late spring and summer phases.
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Figure 2: Grey dots indicate the common variability between the NAO time series of Jones
et al. 1997 and phenological time series at the 1°x1° grid as function of mean entry date of
the phenological phase. Black dots indicate the variance explained by the multiple regression
model with 20 independent variables (calibration period = validation period).

The spatial differentiation of the explained variance appears rather low, because the
differences are small between the Southern and Northern or the Eastern and Western
half of the observation area (not shown).

Only a few EOFs seem to dominate the regression relation. The most important
appear to be the first EOF of the 850 hPa temperature distribution of the month previous
the phenological occurrence date and the same EOF of the actual month of occurrence.
The skill of the different EOFs entering via their associated PCs the MLR depend on

the actual phase. Hence, there is a seasonal cycle, whereby the influence of the two
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temperature EOFs is reduced with increasing yearday. Towards late spring and summer
an unclear composition of EOFs replaces the dominance of the two temperature EOF's.
Because of its importance the first EOF of the 850 hPa temperature fields is depicted in
Figure 3.
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Figure 3: The first EOF of the February, March and April 850 hPa temperature field explaining
40.3 % of its variance.

Figure 3 describes the temperature difference between the northeastern Atlantic and
Europe. This temperature EOF is strongly linked with the first two EOFs of the 850 hPa
geopotential height fields (Matulla et al. 2002), which themselves are highly correlated
with the NAO index (e.g. Fyfe et al. 1999).
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3.2 Canonical correlation analysis

In a first step, both, the macro and micro scale variables, are subjected to an EOF
analysis, resulting in the amount of data to continue the work being greatly reduced and
the signal in the time series almost retained. Phenological occurrence dates serve as local
scale variables and combinations of two large-scale fields as large scale variables. In a
second step the correlation structure between the remaining random fields, derived from
the phenological phases and the considered large scale field combinations, is analysed
with Canonical Correlation Analysis. CCA is constructed to find those patterns whose
time coefficients show maximal correlation. CCA has found wide application as an
analysis and downscaling technique in the field of meteorology, including precipitation
downscaling (von Storch et al. 1993; Gyalistras et al. 1994; Busuioc and von Storch
1996) and downscaling of phenological phases (e.g. Table 2).

Maak and von Storch (1997) explained 72 % of the flowering date variance of Galan-
thus nivalis in Northern Germany with the first pair of canonical correlation patterns.
As large scale field they used 2 m temperature. Table 8 shows results from this study
concerning the flowering date of Galanthus nivalis and compares it to findings of Maak
and von Storch (1997). Chmielewski and Rotzer (2001) found that the spatial patterns
of the first 3 CCA pairs between the 2 m temperature and the beginning of growing sea-
son as marked by the beginning of leafing of 4 species (Betula pubescens, Prunus avium,
Sorbus aucuparia and Ribes alpinum, data from International Phenological Gardens) are
closely linked over Europe. Taken together, the first 3 canonical correlation patterns
explain 73 % of the yearly variability of the beginning of the growing season. In this
work CCA describes the simultaneous variations of local appearances of phenological
phases in central Europe and two large scale atmospheric variables over the North At-
lantic and Europe. In order to obtain the best CCA model, all possible combinations
of independent variables, listed in Table 1, have been tested. The results indicate that
quite a number of combinations of independent variables performs equally well. The
interdependence of the atmospheric variables might explain that observation. For the
large scale variables the number of EOFs is chosen such that a minimum of 80 % of the
variance is explained. The maximum number of EOFs allowed has been set to 16.

For most phenological phases the first 1 or 2 leading EOF's explained more than 85
% of the variability. Only autumn phases required up to 10 or more. Figure 4 illustrates
the spatial pattern of the first CCA pair of relative humidity and temperature anomaly
fields during February, March and April in 850 hPa on the one hand and the phenological
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Figure 4: First canonical patterns for the predictors (a, b) and for dependent variable (c). (a)
and (b) correspond to temperature and relative humidity subpattern, respectively. (c) shows
the pattern of the phenological phase Tarazacum officinale beginning of flowering. The first
ten predictor EOF's and the first two EOF of the phenological phase were used, explaining 82
% and 88 % of the respective total variances. The correlation between the time coefficients is
0.92.

phase phase Tarazacum officinale beginning of flowering on the other. One finds a
temperature dipole over the selected area with positive anomalies centered over northern
Germany and southern Scandinavia and negative anomalies over the north Atlantic.
This pattern is comparable with the 2 m temperature anomaly pattern of Figure 4 in
Maak and von Storch (1997). Positive temperature anomalies seem to coincide with
negative anomalies of relative humidity. Higher temperatures cause an earlier flowering
of Taraxacum officinale by 5 to 10 days, with the greatest advancement in the area of the
greatest temperature anomalies in the north and the least advancement at the southern

boundary of the area.
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4 Comparison of MLR and CCA

Using 3 different validation approaches, the performance of the statistical models are
compared. In the first experiment the model calibration and validation period span the
total period for which data are available (1951-1998). The second validation experiment
is a split sample test with a calibration period from 1951-1980 and an independent
validation period from 1981-1998. In the third validation case, temporal cross validation
is applied, where the model is calibrated over 48 different 47—year periods, successively
skipping one independent year, for which the model is applied. This results in a modeled
time series over the total time period of 48 years, which is compared with the observed
series. As evaluation parameter the variance explained by the models is calculated.
The correlations, on which the explained variances are based on, must be significant
at the 95 % level, otherwise the explained variance value is rejected for further statistical
treatment. Therefore one has to consider not only the achieved mean explained vari-
ance but also the numbers above the bars, showing the percentage of grid points with

significant correlations.

4.1 Phenological phases

Figure 5 and 6 show the results of the above described validation approach. The most
striking features are: (i) The decreasing level of the MLR performance from the first
experiment to the the temporal cross validation and then to the split sample test. This
is not to be observed in case of the CCA Model, where the explained variances remain
within a restricted range. The drop in explained variance for the phenophases is espe-
cially pronounced where for the calibration period values of 70 to 80 % are achieved,
when at the same time in the other two validation experiments the values remain below
50 % (Figure 5). (ii) The deficiencies of MLR and CCA in the ability to describe the
autumn phases. For these phenophases both measures of skill, the explained variance
as well as the percentage of gridpoints with a significant correlation, clearly take values
below the others. (iii) MLR is much more sensitive to differences in time span avail-
able for calibration. Reducing the calibration period by more 17 years (temporal cross
validation has 47 years for calibration and split sample case 30 years) reduces the MLR
performance much more than that of the CCA (Figure 5 and 6). (iv) In the case of
phenological phases as local scale variables and temporal cross validation (see Figure 7),

CCA performs generally better than MLR. Specifically, the phases during April improve
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of CCA. The fraction of explained variance is relatively high during March and April,
decreases in May and June and decreases even further during early and full autumn.
In case of MLR the seasonal pattern in performance is not so pronounced (Figure 7).
However, compared to the other phases, the performance during early and full autumn

is clearly reduced.
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Figure 7: Comparing the results of the temporal cross validation procedure between MLR,
(black) and CCA (white) for the phenological phases, 1951-1998. Results are plotted for
each of the 17 phenological phases (see Table 1) separately. bars: mean squared correlation
between measured and modeled time series (p<0.05). Percentages of grid points with significant
correlations are written above the corresponding bar.

Table 3: Results of MLR and CCA in comparison for Galanthus nivalis beginning of flowering.

c. ... calibration period, v. ... validation period
Snow drop explained variance at | Percentage of
Galanthus nivalis local grid points or | grid points
beginning of flowering stations (mean value) | with p<0.05
Maak and von Storch (1997) 1971-1990
CCA, ¢.:1971-1990, v.: 1951-1970 0.55
this work 1951-1998
MLR ¢.:1951-1998 v.:1951-1998 0.78 100
MLR ¢.:1951-1980 v.:1981-1998 0.48 98
MLR temporal cross validation:1951-1998 0.41 100
CCA ¢.:1951-1998 v.:1951-1998 0.60 100
CCA ¢.:1951-1980 v.:1981-1998 0.62 100
CCA temporal cross validation:1951-1998 0.53 100
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Figure 8: Flower of Galanthus nivalis

4.2 Temperature

Both techniques, MLR and CCA, show improved skills in modeling local scale temper-

(Figure 9 and 10) as compared with phenological phases as local scale variables.

ature

As was the case with phenological phases the MLR model shows a much larger drop in

explained variance from the calibration case to the other validation cases. However, the

decrease of skill for temperature appears less then that for the phenological phases. The

performance variables of the CCA do not display any systematic difference between the

Moreover, the pattern of seasonality in explained variance is

3 validation procedures.

clearly different for temperature, if compared with that of the phenological phases.
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Figure 11 reveals a slightly higher skill of the CCA model (see also Figure 7). The

reason for both observations might be associated with the restricted geographical extent
of the tmperature data set, which has only the POSITIVE area covered south of 49°N

and therefore does not provide enough spatial variability for the CCA.
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5 Conclusions

Phenological observations as non - atmospheric independent variables are no less suited
for the purpose of downscaling than any local scale atmospheric variable, because in
middle and higher latitudes the seasonal cycle of plants, especially in spring to summer,

is mainly governed by the local scale temperature.

As a result of this work one might generalise that transfer functions based on a number
of EOF's of one or two large scale atmospheric variables show a superior performance to
regressions based on the NAO time series alone. Temporal cross validation reveals that
the CCA model performs generally better than the MLR model. MLR can explain 20
to 50 % of the temporal variance of the phenological phases, whereas the CCA model
shows a range from 40 to over 60 %. Especially for phenological phases during April, the
CCA model achieved an improvement of 15 to 30 %. Phases occurring after April are
more difficult to model for either of the two models. The inclusion of spatial information

of the micro scale variable seems to make CCA superior to MLR.

For temperature there is no obvious superiority of the CCA model over the MLR
model, which might be related to the restricted spatial range of the temperature data.
Both models show better performances for temperature than for phenological phases
ranging from 40 to over 70 % explained variability in case of temporal cross validation.
It appears that the CCA model can extract more information from the independent
variables over the available time period than the MLR model. It might be the case
that the MLR models require longer time periods for calibration than the CCA model.
Consequently, if data are available only over restricted time periods, CCA should be
the model of choice. What is the added value of this study? The results of this
study indicate time series of biospheric variables (e.g. phenological occurrence dates)
are very well suited for empirical downscaling, which was originally developed for local
scale atmospheric variables. Moreover the findings suggest the use of CCA in preference
to MLR or the NAO index alone in order to transfer information between the scales.
However, autumn phases are more difficult to model than spring phases. This confirms

the current state of knowledge (e.g. Menzel 2002).
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