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Abstract

Extensive evidence of a large-scale anthropogenic climate change has been collected during the last
decades. In contrast, regional-scale climate change is less well understood. Thus, this study aims at
contributing to the discussion of an observable human influence on changes in near-surface tempera-
ture and precipitation in the Baltic Sea catchment.

Formal detection and attribution studies include three ingredients: the observed change, the hypothe-
sized responses to external forcing mechanisms, and an estimate of the natural internal variability.
The latter two are often derived from simulations with global-scale general circulation models
(GCMs). The spatial resolution of present-day GCMs is inappropriate for the simulation of climate
over heterogeneous terrain and in regions with complex land-sea distribution. Therefore, we
compare the spatial pattern of the change with regional climate model simulations. In contrast, the
change in area-average temperature and precipitation is compared with GCM simulations, as
dynamical downscaling with regional climate models is shown to have a minor influence on
area-average quantities.

The necessary simulations for a formal detection and attribution analysis are not available from
regional climate models. Hence, we propose an alternative approach. We compare the most recent
trends in observed precipitation and temperature in the Baltic Sea catchment with estimates of the
response to anthropogenic forcing from regional climate models. The observed change in tempera-
ture is consistent with regional climate change projections. In contrast, the model projections
generally underestimate the magnitude of the recent change in precipitation. The recent change in
the North Atlantic Oscillation does not fully account for the mismatch in simulated and observed
precipitation changes. That is, the anthropogenic change in precipitation is not dominant as other
forcings not included in the models have a strong impact as well, the model system used is
significantly flawed in its ability to simulate the response to anthropogenic forcing, or the observed
change is strongly influenced by natural internal variability. We thus study the above alternatives in
a formal detection and attribution analysis.

We assess the relative importance of anthropogenic and natural forcing and the role of internal
variability in explaining the observed change in area-average temperature and precipitation using
GCM simulations. The observed change in area-average temperature in the Baltic Sea catchment is
very likely not caused by internal variability alone. Although anthropogenic forcing is the dominant
forcing, we are not able to separate the anthropogenic and natural influence on the observed change
in a two-signal attribution analysis. The results for precipitation are strongly dependent on the details
of the analysis. We detect an external influence, but neither anthropogenic nor natural forcing alone
provide plausible explanations for the observed change. Model simulated changes in precipitation
are generally much weaker than the observed changes, which corroborates the findings based on
regional climate models. The detection results for precipitation should be treated with caution, as
present-day GCMs have severe limitations in simulating regional-scale precipitation.



NACHWEIS EINES ANTHROPOGENEN EINFLUSSES AUF DIE
BEOBACHTETEN VERANDERUNGEN DER TEMPERATUR UND DES
NIEDERSCHLAGS IN NORDEUROPA

Zusammenfassung

Der menschliche Einfluss auf den globalen Klimawandel wurde erfolgreich nachgewiesen. Im
Verlauf der letzten Jahrzehnte tritt dieser Einfluss in thermischen Variablen wie der globalen Mittel-
temperatur oder dem Wirmegehalt der Ozeane deutlich hervor. In den letzten Jahren gelang auch
der Nachweis eines anthropogenen Effekts auf den Niederschlag, die Zirkulation und andere nicht-
thermische Grofen. Im Unterschied dazu verstehen wir den regionalen Klimawandel bisher noch
ungeniigend. Diese Arbeit will deshalb zum Verstindnis der beobachteten Verdnderung der
Temperatur und des Niederschlags im Ostseeraum beitragen.

Die Auflosung heutiger globaler Klimamodelle ist fiir die rdumliche Darstellung des Klimas in
Gebieten mit ausgeprigtem Relief und stark zergliederter Land-Meer-Verteilung nicht geeignet.
Deswegen vergleichen wir das rdumliche Muster des beobachteten Wandels mit Simulationen
regionaler Klimamodelle. Die beobachtete Veridnderung von Gebietsmittelwerten der Temperatur
und des Niederschlags im Ostseeraum dagegen analysieren wir mit Simulationen globaler Modelle,
da die Verwendung hoch aufgeldster Simulationen einen vernachlédssigbaren Effekt auf Gebiets-
mittelgroBen hat.

Aus Simulationen mit regionalen Klimamodellen leiten wir den zu erwartenden menschgemachten
Klimawandel fiir den Ostseeraum ab. Diesen vergleichen wir mit den beobachteten Verédnderungen
des Niederschlags und der Temperatur der letzten Jahrzehnte. Die beobachtete Erwédrmung stimmt
gut mit den regionalen Projektionen tiberein. Im Unterschied dazu unterschétzen die Klimamodelle
die Stirke des beobachteten Wandels im Niederschlag. Die beobachtete Zunahme der Nordatlan-
tischen Oszillation in den letzten Jahrzehnten des 20. Jahrhunderts vermag die Diskrepanz zwischen
beobachteter und simulierter Niederschlagsverdnderung nicht vollstindig zu erkldren. Daraus
folgen drei mogliche Interpretationen: Der menschliche Einfluss ist nicht dominant; Antriebe, die im
Modellsystem nicht berticksichtigt sind, erzeugen die beobachtete Niederschlagsveridnderung im
Ostseeraum. Das Modellsystem gibt den menschlichen Einfluss nicht korrekt wieder. Oder die
Diskrepanz kommt auf Grund natiirlicher interner Variabilitdt zu Stande und ist also zuféllig. Diese
drei moglichen Alternativen untersuchen wir in einer formalen Nachweis- und Zuordnungsanalyse.

Mit Hilfe von Daten globaler Klimamodelle analysieren wir den relativen Anteil natiirlicher und
anthropogener Antriebe und der internen Variabilitit am beobachteten Klimawandel in Gebiets-
mittelwerten der Temperatur und des Niederschlags. Die beobachtete Veridnderung der Temperatur
im Ostseeraum ist sehr wahrscheinlich nicht nur auf interne Variabilitét zurtickzufiihren. Das bedeutet,
dass wir einen externen Einfluss nachweisen knnen. Anthropogener Antrieb vermag die beobachtete
Erwirmung zu erkléren, natiirlicher Antrieb allein nicht. Obschon der anthropogene Einfluss der
dominante Einfluss auf die beobachtete Erwdrmung im Ostseeraum ist, konnen wir den relativen
Anteil des anthropogenen und natiirlichen Einflusses in einer Zwei-Signal Zuordnungsanalyse
nicht trennen. Zudem besteht weiterhin die Moglichkeit, dass Antriebsmechanismen, die nicht
in den verwendeten Modelldufen berticksichtigt sind (z.B. Landnutzungsénderungen, indirekter
Aerosoleffekt), regional einen starken Einfluss ausiiben. Die Resultate fiir den Niederschlag hdngen
stark von den Details der Analyse ab. Wir kénnen einen externen Einfluss auf die Veridnderung
des Niederschlags im Ostseeraum nachweisen, aber weder anthropogener noch natiirlicher Antrieb
noch die Kombination der beiden Antriebe vermégen die beobachtete Veréinderung zu erklédren. Die
simulierten Verdnderungen sind im Allgemeinen deutlich schwicher als der beobachtete Wandel.
Die Resultate fiir den Niederschlag miissen mit Vorsicht betrachtet werden, da heutige Klimamodelle
den beobachteten Niederschlag und seine Veridnderung nicht zufriedenstellend simulieren kdnnen.
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I INTRODUCTION

During the last decades, evidence of a global-scale human influence on the observed climate change has
been detected in various thermal properties of the climate system, including near-surface temperature
(Wigley and Raper, 1990, Stouffer et al., 1994, Santer et al., 1995, Hegerl et al., 1996, 1997, 2000,
Barnett et al., 1999, Tett et al., 1999, Stott et al., 2000, Gillett et al., 2002b, among others), ocean heat
content (Barnett et al., 2001), and sea surface temperatures (Gillett et al., 2008b). In contrast, the human
influence in non-thermal properties has been detected only recently (e.g. sea level pressure, Gillett et al.,
2003, precipitation, Zhang et al., 2007, and tropopause height, Santer et al., 2004). Even less is known
about the anthropogenic climate change at the regional scale and on impact relevant parameters such as
precipitation, wind, and extremes in climatic parameters. In recent years, regional-scale climate change
and impact relevant parameters have thus come into focus (e.g. Kiktev et al., 2003, Christidis et al.,
2005, Hegerl et al., 2006, Gillett et al., 2008a, Min et al., 2008). An anthropogenic effect on near-surface
temperatures in Europe has been detected by Stott (2003), by Zhang et al. (2006) for the Mediterranean,
and by Spagnoli et al. (2002) for France. Recently, Zorita et al. (2008) concluded that the number
of record-warm years in northern Europe is significantly different from what is expected in a stationary
climate. Apart from that, little is known about a potential anthropogenic influence in Northern Europe.

Therefore, this study aims at investigating on the detectability of an anthropogenic influence on observed
temperature and precipitation changes in the Baltic Sea area.

In order to be able to discuss the detectability of an anthropogenic climate change in the Baltic Sea region,
we need to introduce a few concepts and terminologies. The following paragraphs thus include a short
introduction to the climate system, climate change, and the concepts of how we assess the detectability
of anthropogenic change in observations of climatic parameters. Readers familiar with these concepts
may well continue the lecture in chapter 2.

1.1 Climate change and the climate system

The climate system is a complex and interactive system. It consists of subsystems comprising the at-
mosphere, the hydrosphere, the land surface, the cryosphere, and the biosphere (Le Treut et al., 2007).
The climate system is powered by the Sun; the temporally and spatially varying energy input due to
the Earth’s movement around the Sun causes motion in the atmosphere and the ocean and also various
changes in the other components. In each of the subsystems and between the individual components
of the climate system, a wealth of processes and interactions take place. Thus, the components of the
climate system intrinsically generate variability. This variability is referred to as internal variability of
the climate system.

Internal variability is present at all time scales. The atmosphere is the most unstable component of the
climate system and thus changes most rapidly. Processes in the atmosphere, such as small-scale turbu-
lence, synoptic systems, and stratosphere-troposphere exchange, cause variability on time-scales from
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virtually instantaneous to years. The oceans integrate the high-frequency variability from the atmo-
sphere (Hasselmann, 1976) and damp temperature variations due to the thermal inertia of large water
bodies. Another important source of variability is the coupling of different components of the climate
system. The most well-known process in this respect is the El Nifio-Southern Oscillation (ENSO). The
ENSO phenomenon describes the coupling of a sea-level pressure oscillation in the Pacific, the Southern
Oscillation, and changes in the ocean circulation and stratification leading to sea-surface temperature
anomalies that are most noticeable in the tropical eastern Pacific, the El Nifio/La Nifia anomalies (see
Neelin et al., 1998 for more discussion). El Nifilo/La Nifia conditions occur every 3-7 years and have
strong implications on the occurrence of floods and droughts in the tropics and to a lesser extent affect
climate globally (Trenberth et al., 2007, and references therein). Further low-frequency variability in the
climate system stems from changes in the ice-sheets and changing land cover and vegetation.

In addition to the variability generated in the climate system, climate also varies under the influence
of external forcing mechanisms. External forcings can be either of natural origin, such as changes in
the solar irradiance and changing atmospheric composition due to volcanic eruptions, or they can be
anthropogenic, such as the increase in atmospheric greenhouse gas concentrations due to fossil fuel
combustion. The response to external forcings is modified by often non-linear processes and amplified
or damped by feedback processes in the climate system. The first-order effect of external forcing is a
change in Earth’s energy balance. While changes in the solar irradiance directly affect Earth’s energy
balance, other forcings such as increasing stratospheric aerosol concentrations due to volcanic eruptions
or increasing greenhouse gas concentrations alter Earth’s energy balance through changing the radiative
properties of the atmosphere. Forcing mechanisms such as changes in the tropospheric aerosol concen-
tration and land cover changes also have a direct influence on the hydrological cycle.

The relative importance of the individual external forcing mechanisms at the global scale is assessed
using the concept of radiative forcing (Ramaswamy et al., 2001). Radiative forcing is defined as the
radiation imbalance at the tropopause after allowing stratospheric temperatures to readjust to radiative
equilibrium but with the troposphere and land-surface temperatures remaining unadjusted. Thus, radia-
tive forcing can only be computed in model experiments. Radiative forcing can be converted to changes
in global mean temperature; the conversion factor is called climate sensitivity parameter. The quantifica-
tion of climate sensitivity - though a central quantity for the understanding of climate change - is still a
matter of ongoing debate (for a review see Knutti and Hegerl, 2008), and thus radiative forcing estimates
are not easily transferred to temperature changes. In addition, radiative forcing is a useful concept to
estimate and compare the global-scale equilibrium response to perturbations, but it does not necessarily
convey information on the transient response of the climate system nor on the relative importance of the
individual forcings at the regional scale.

The estimated contribution of individual radiative forcings to the total forcing from 1750 to 2005 as
assessed by the Intergovernmental Panel on Climate Change (IPCC, Forster et al., 2007) is shown in
figure 1.1. Accordingly, the radiative forcing due to long-lived greenhouse gases is +2.63 (+/-0.26)
Wm2; the total radiative forcing due to human influences is +1.6 Wm™? with a large uncertainty ranging
from +0.6 to +2.4 Wm™. The large uncertainty of the anthropogenic radiative forcing estimate originates
mainly from the uncertainties in the effect of aerosols on climate. We further note that forcings affecting
local to continental scale climate such as the aerosol forcing or surface albedo changes are less well
understood than the global-scale greenhouse gas forcing.

Persistent changes in climatic parameters both due to external forcing and internal variability are referred
to as climate change. Climate change detection then deals with the decomposition of the observed
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Figure 1.1: Radiative forcing from 1750 to 2005 as assessed by the IPCC (adopted from Forster et al.,
2007)

climate change into an externally forced response and changes due to internal variability. Climate change
detection is thus a signal in noise problem.

1.2 The concepts of detection and attribution

Following the definition from the third assessment report of the IPCC (Mitchell et al., 2001), detection is
the process of demonstrating that the observed change is significantly different from internal variability
in a statistical sense. This definition implies the following things: First, detection analysis does not
provide explanations (possible forcing mechanisms) for the observed change. We only exclude with
a certain probability of error the possibility of the observed change being due to internal variability
alone. Second, the crucial element in a detection analysis is the estimate of internal variability. If we
underestimate internal variability, our detection statement will be overconfident and vice versa. Even
though we do not have to specify an alternative hypothesis to be able to technically detect an externally
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forced change, adding knowledge on the expected change in the analysis will generally increase the
power of the statistical test considerably.

Attribution, on the other hand, deals with the identification of the most likely explanation(s) for the
observed change. Unequivocal attribution would require controlled experimentation with the climate
system. This is not possible as we have no spare Earth to experiment with. Hence, attribution has to be
based on physics-based models of the climate system (but not necessarily complex GCMs, see Schneider
and Held, 2001, for an alternative approach). The attribution problem is usually formulated as a statistical
fit with the observed change regressed on the model-derived responses to external forcings. In contrast
to the detection problem, the null hypothesis of the attribution analysis is the desired outcome. That is,
we try to verify the null hypothesis; a successful attribution statement is consequently less powerful than
a detection statement. Instead, we rather think of attribution as a plausibility assessment. We attribute
the observed change to a given forcing mechanism if the following three requirements are fulfilled with
a specified probability of error:

- the observed change is not due to internal variability alone (detection),
- the observed change is consistent with the response to the hypothesized forcing mechanism(s),

- and the observed change is not consistent with the response to all other physically plausible forcing
mechanisms.

The last requirement indicates that attribution is a never-ending task, since we have to reanalyze the data
as our understanding of the forcing-response mechanisms in the climate system evolves.

1.3 Regional-scale detection and attribution

Compared to global-scale climate change detection, two main additional difficulties complicate detection
and attribution at the regional scale. First, as a consequence of the decreasing aggregation of data,
the variability increases (see figure 1.2). This most often leads to decreasing signal-to-noise ratios of
externally forced changes, and these changes are generally harder to detect in small domains (Zwiers
and Zhang, 2003).

Second, the potential limitations of present-day global general circulation models (GCMs) in repro-
ducing regional-scale climate constrain our understanding of regional climate change. These potential
limitations fall in two broad classes: resolution and complexity.

The coarse resolution of present-day GCMs with horizontal grid spacing of the order of 100-300 km can
lead to considerable misrepresentation of regional climate in areas with strong relief and complex land-
sea distribution (see figure 1.3). Processes such as snow-melt or changes in sea surface temperature and
in sea-ice distribution are not well represented. Additionally it is known that the large-scale circulation
response can be altered considerably by local topographic forcing (Christensen et al., 2007).

We can overcome resolution dependent limitations using empirical or dynamical downscaling, each of
which has its own drawbacks. Empirical downscaling comes at the cost of loss in variability and is based
on the assumption of stationarity of the empirical relationship used to downscale the desired quantities
(Wilby et al., 1998, von Storch and Zwiers, 1999). Dynamical downscaling using limited area models,
on the other hand, is expensive in terms of compute time. Even though there have been significant efforts
taken to downscale GCM simulations for Europe during the last two decades (e.g. the EU-Projects PRU-
DENCE, Christensen and Christensen, 2007, and ENSEMBLES, Hewitt and Griggs, 2004), simulations
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Figure 1.2: Annual area average land-surface temperatures from 1900 to 2008 for global land except
Antarctica (left) and Europe north of 50° N and west of 40° E (right) according to the CRUTEM3v data
set (Brohan et al., 2006). The thick line denotes the 11-year moving average of the annual temperatures.

required for detection and attribution studies such as unforced control runs and single-forcing runs have
not yet been performed with regional climate models (RCMs).

An alternative way to deal with the different spatiotemporal resolution of model and observation data is
to upscale or aggregate the observed quantities. By doing so, we reduce small-scale and short-time fluc-
tuations in the observed record that are not simulated by the models. However, upscaling is a promising
approach only if the local processes do not influence climate and climate change at larger scales.

The second source of uncertainty in regional predictions arises from the varying complexity of climate
models. Present-day coupled general circulation models include at least atmosphere, ocean, and sea-
ice modules, the number of additional components included and the number of processes and forcings
explicitly simulated varies significantly across models. All of these differences are important sources
of uncertainty in regional projections; for climate change attribution, however, missing external forcing
mechanisms are the most important uncertainty, since the local response may be dominated by forc-
ings other than the increasing greenhouse gas (GHG) concentrations (e.g. land-use changes, industrial
aerosols). This represents a major drawback for regional-scale attribution, as we cannot be sure that
the most important explanations (the regional response to external forcings) have been included in the
analysis.

One possible way to deal with the problem of potentially missing or misrepresented forcing mechanisms
and processes in the models involves perfect-model studies. By carrying out the detection and attribution
analysis for individual model simulations which are treated as pseudo-observations, we can identify the
regionally important forcings in the model world. Getting the same positive detection and attribution
both in the model world and in the real world (using of course model-derived climate change signals
in both cases) then substantiates the finding that the hypothesized mechanisms are responsible for the
observed change. On the other hand, if the detection results in the real world differ from the results using
simulations as pseudo-observations, we cannot know whether the differences are due to missing forcing
mechanisms or due to model biases.
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Figure 1.3: Typical horizontal resolution and orography of present-day global climate models (left) and
limited area models as run for ensemble simulations (right). The grey lines denote the Baltic Sea catch-
ment.

1.4 Study domain

The Baltic Sea catchment is an ideal testbed for our understanding of regional climate change. The study
domain covers an area of 1.7 million km? - slightly less than 20% of the European continent. The Baltic
Sea catchment extends from 8.2 to 38.1° E and from 49 to 69.4° N and thus ranges from the temperate
mid-latitudes to sub-polar regions (gray lines in figure 1.3). A wealth of different processes influence the
climate in this region and potentially modify the large-scale response to external forcings. Features of
the study domain and related processes include:

- a pronounced relief with mountains up to 2000 m at the northwestern divide and thus strong tem-
perature and humidity gradients,

- variable land surfaces with numerous rivers and lakes and complex land-sea distribution,

- an inland sea with brackish waters and very distinct dynamics,

- intermittent snow-cover with high spatial and temporal variability due to the distinct orography,

- intermittent sea-ice in the Gulf of Bothnia and Gulf of Finland,

- wintertime cold-air outbreaks from the Arctic leading to deep convection with heavy snowfall, to
name just a few.



1.5 Outline of the thesis

Thus, the climate in the Baltic Sea area is expected to be difficult to predict, and consequently, cli-
mate change detection and attribution can help to identify gaps in our understanding of regional climate
change.

1.5 Outline of the thesis

In the following chapter, we assess the influence of dynamical downscaling on the simulation of param-
eters relevant for regional scale detection. In chapters 3 and 4, we assess the spatial pattern of the change
using information from regional climate models. In the absence of regional climate model simulations
required for formal detection and attribution studies, we propose an alternative approach. In chapter 5
we analyze the temporal evolution of area-average temperature and precipitation in a formal detection
and attribution analysis. The response patterns and estimates of the internal variability are derived from
simulations with global climate models. The last chapter contains a summary of the most important
results of the previous analyses along with a short outlook on potential future studies.






2 REGIONAL CLIMATE IN GLOBAL MODELS AND LIMITED AREA MODELS

In this chapter, we discuss how potential model deficiencies due to inadequate resolution influence de-
tection and attribution in northern Europe. Therefore, we compare the results of time-slice experiments
with a coupled regional atmosphere-ocean model and the results of a set of simulations with present-day
coupled atmosphere-ocean general circulation models (AOGCMs) with observation data. In contrast to
AOGCMs, in which the Baltic Sea often features either as a part of the North Atlantic with an unre-
alistically wide opening towards the North Sea or as a lake with no exchange with the North Atlantic,
the high resolution of the coupled regional climate models allows for a more realistic representation of
the Baltic Sea. The misrepresentation of the Baltic Sea in present-day AOGCMs has supposedly large
consequences for the simulation of the local climate (Rédisénen et al., 2003, Kjellstrom et al., 2005).

2.1 Model data and observations used

The RCM data stem from the Rossby Centre regional atmosphere-ocean model (RCAO) of the Swedish
meteorological and hydrological institute (SMHI, see Riisinen et al., 2004 and references therein). A to-
tal of six 30-year time slice experiments have been performed, three of which driven at the boundary with
the global model HadAM3h (Jones et al., 2001b) and three driven with data from the ECHAM4/OPYC
model (Roeckner et al., 1999). For each of the global models, one time slice simulation has been run with
observed GHG and sulfate concentrations representing present-day conditions for the period 1961-1990
and two time slice experiments have been run representing possible futures for the period 2071-2100
with GHG and sulfate concentrations according to the [IPCC SRES A2 and B2 scenarios.

The HadAM3h is an atmosphere only model and has been run with observed sea-surface temperatures in
the present-day time slice to get the best possible representation of the observed climate. For the time-
slice from 2071 to 2100, the observed sea-surface temperatures have been combined with the climate
change signal derived from a simulation with the coupled model HadCM3 (Gordon et al., 2000). The
above mentioned limitations of present-day GCMs in representing the Baltic Sea are overcome when
observed sea-surface temperatures are used as in the simulations driven with HadAM3h. In this setup,
the comparison of the regional climate model simulation with its driving GCM simulation does not shed
light on the question whether dynamical downscaling with a coupled regional climate model can help to
overcome the shortcomings of global models at the regional scale. Thus, we do not analyze the RCM
simulations driven with HadAM?3h, but use the ECHAM4/OPYC driven simulations instead.

In addition to the GCM data used to drive the RCM at the boundaries, we include simulations from the
World Climate Research Programme’s (WCRP) Coupled Model Intercomparison Project (CMIP3) multi-
model dataset in the analysis (Meehl et al., 2007b). We use all of the available CMIP3 data except for the
FGOALS1.0_g model (Yonggiang et al., 2002, 2004), which has a highly unrealistic sea ice distribution
and should not be used for mid- to high-latitude studies (see documentation on this model on http://
www-pcmdi.1llnl.gov/ipcc/model_documentation/ipcc_model_documentation.php). Instead
of future projections following the SRES A2 or B2 scenario as with the RCM and driving GCM data, we
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use the same CMIP3 projections following the SRES A1B scenario that are used in the formal detection
and attribution analysis in chapter 5.

The observed temperature and precipitation in the Baltic Sea catchment is derived from gridded tem-
perature and precipitation data sets. For temperature, we use the CRUTEM3v data from the Climatic
Research Unit (CRU, Brohan et al., 2006, Jones and Moberg, 2003). CRUTEM3yv is based on 2-m tem-
peratures that have been interpolated to a 5° by 5° grid and are available as anomalies with respect to 1961
to 1990. The CRUTEM3v data are adjusted for changes in the variance due to a temporally changing
number of stations contributing to the grid box averages (Jones et al., 2001a). The absolute temperatures
needed to assess the climatological bias between simulations and observations are obtained by adding
the gridded climatology of New et al. (1999) to the anomalies. Area-average precipitation is derived
from the fourth version of the “Global Data Reanalysis Product” of the Global Precipitation Climatology
Centre (GPCC, Schneider et al., 2008). These gridded precipitation fields have been interpolated from
quality controlled rain-gauge data.

All model simulations and gridded observation data are interpolated to a common 5° by 5° longitude
latitude grid using conservative remapping (Jones, 1999). Only grid boxes with a land-area fraction
of at least 50 percent are considered in the interpolation. We compute area-average temperatures and
precipitation from the gridded data and weight the individual grid boxes according to their contribution
in area to the total area of the Baltic Sea catchment.

2.2 Analysis and Discussion

We compare three quantities relevant to the detection and attribution problem. First, we analyze the
systematic bias in the model simulations by comparing the annual cycle of simulated area-average tem-
perature and precipitation to the observations. Even though the systematic bias is not directly relevant to
the detection and attribution question, it points to missing or misrepresented processes and is thus impor-
tant in judging whether the model data are adequate. Second, we compare the variability of simulated
area-average time series to the variability in the observations. Third, we investigate whether dynamical
downscaling of GCM data with a coupled RCM alters the climate change response. Therefore we com-
pare the change between the future (2071-2100) and present-time (1961-90) time slices available from
the RCM with the respective change in GCM data.

2.2.1 Systematic biases in the present-day climate

Most of the GCMs feature a more pronounced annual cycle, with winters being too cold and and summers
being slightly too cold on average (left panel in figure 2.1). The strong cold bias in the winter half-year
in northern Europe is a well-known fact and has been attributed to weaker than observed westerlies in
the CMIP3 ensemble (Christensen et al., 2007). Earlier studies based on different GCMs find a cold
bias in the multi-model mean as well; this cold bias is most pronounced in spring (see chapter 3.3.2
in The BACC author team, 2008). The ECHAM4/OPYC simulation used to drive the coupled regional
climate model RCAO shows a pronounced cold bias of about 2K in early spring, whereas the simulated
temperature is close to the observations during summer and autumn. This bias is strongly reduced in the
RCAQO simulation. The higher spatial resolution and resulting more realistic snow cover and snow melt
are likely candidates to explain the improved annual cycle of temperature in the RCM.
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Figure 2.1: Deviation of simulated from observed area-average temperature (left) and precipitation
(right) for the period from 1961-90. The solid red line denotes the bias of the coupled regional climate
model simulation, the dashed red line the bias of the GCM used to drive the regional model. The range
and the middle 90% and 75% of all CMIP3 simulations are indicated in shades of grey along with the
median of the CMIP3 simulations in black. The dotted black line denotes the uncorrected precipitation
values (see text).

Precipitation measurements suffer to varying degrees from systematic errors such as wind-induced un-
dercatch and evaporation losses (e.g. Adam and Lettenmaier, 2003). In order to account for some of
these systematic errors, we use a climatological correction for gridded precipitation data provided by
Legates and Willmott (1990). Compared with the uncorrected observations, all of the GCMs simulate
too much precipitation from autumn to spring and most of the GCMS simulate too little precipitation in
summer (right panel in figure 2.1). After correcting the observations for wind-induced undercatch, most
of the wet bias from autumn to spring is removed, whereas the dry bias in summer is now consistent
across all models in the CMIP3 ensemble. The ECHAM4/OPYC simulation shows a bias very similar to
the median of the bias of the CMIP3 ensemble, with the dry bias in summer being even stronger than the
median of the bias in the CMIP3 ensemble. In contrast, we find no dry bias in summer in the regional
climate model simulation. In addition, ECHAM4/OPYC shows much less variability in summertime
precipitation than RCAO (see figure 2.2). Compared to the observed variability, both RCM and GCM
underestimate the variability. The summertime dry bias (see figure 2.1) and the underestimation of pre-
cipitation variability are consistent features across the GCM simulations analyzed (not shown). These
results hint to the fact that the precipitation parameterization in the global model is not adequate for the
- mostly convective - precipitation in the Baltic Sea catchment area in summer.

Whether the higher resolution of the regional model leads to a better representation of convective precip-
itation or whether the parameterization in the regional model has been — deliberately or unintentionally —
tuned to reproduce precipitation in northern Europe, we do not know. However, none of the 14 regional
climate models analyzed in the PRUDENCE project shows a dry bias in summer over northern Europe
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(Jacob et al., 2007). This and the consistent dry bias in all GCM simulations analyzed indicates that
tuning alone is not a plausible explanation of the improved representation of summertime precipitation
in RCMs.
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Figure 2.2: Monthly area-average temperature (left) and precipitation (right) in the Baltic Sea catchment
for the period from 1961 to 1990 as simulated in the regional coupled model RCAO and the global model
ECHAMA4/OPYC providing the boundary conditions for the regional climate model simulation. The
colors indicate the seasons in which the monthly data fall.

2.2.2 Variability in the present-day climate

We compare the standard deviation of simulated and observed seasonal temperature anomalies in the
present-day time slice (1961-90). The variability of seasonal temperature anomalies as simulated by
most of the GCMs is not significantly different from the observed variability according to a variance-
ratio test (5% significance level, see figure 2.3). In addition, the variability in both the subset of the
CMIP3 ensemble including anthropogenic forcing only (ANT) and the variability in the subset including
anthropogenic and natural forcing (ALL) clusters around the observed variability. The variability of sea-
sonal temperature anomalies as simulated by models with anthropogenic forcing only is not significantly
different from the variability as simulated by models including both anthropogenic and natural forcings.
Thus, natural forcing in GCM simulations has little influence on the variability of seasonal temperature
in the Baltic Sea catchment. In contrast we find that simulated variability differs considerably across
models.

Downscaling the GCM results with the coupled regional model RCAO decreases the variability in sea-
sonal temperature anomalies considerably. Compared to the driving GCM, the RCM simulated tempera-
ture varies slightly less in all seasons. In winter, however, the difference in simulated variability is most
pronounced. As can be seen from figure 2.2 this is mainly due to the fact that cold winters tend to be
colder in ECHAM4/OPYC than in the regional model RCAO. Cold winters are also milder in the other

12



2.2 Analysis and Discussion

RCM time slices compared to the respective GCM simulations used to drive the RCM. As for the cold
bias in spring, this difference between RCM and GCM simulations could be related to excessive snow
cover in the GCMs due to the coarse resolution. However, further analysis is needed to confirm this
hypothesis.
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Figure 2.3: Standard deviation of seasonal area-average temperature anomalies from 1961 to 1990. The
vertical black line denotes the observed standard deviation according to the CRUTEM3v data along
with its 95% confidence interval according to a variance ratio test. The diamonds and the histograms
indicate the standard deviations as simulated in the CMIP3 ensemble. The solid red line is the standard
deviation of seasonal temperature anomalies as simulated by the coupled regional climate model, the
dashed red line corresponds to the standard deviation in the global model ECHAM4/OPYC used to drive
the regional model at the boundaries.

The representation of variability in simulated and observed area-average precipitation is analyzed using
relative seasonal precipitation anomalies from 1961 to 1990. The simulated variability in precipitation is
lower than the variability observed for almost all the models analyzed (figure 2.4). This finding is in line
with earlier studies concluding that variability in relative precipitation anomalies is underestimated in
global models (The BACC author team, 2008, Réisdnen, 2001). Downscaling with a coupled RCM leads
to an increase in the variability, which is mainly due to better representation of convective precipitation
in the regional model and thus stronger variability in summer and autumn (figure 2.2). However, as we
have only time slices of 30 years available from the RCMs, we cannot investigate whether a more realistic
representation of the Baltic Sea in RCM simulations has an influence on low-frequency variability. This
limits our ability to judge, whether using RCM data could enhance our estimate of internal variability
for regional-scale detection and attribution studies.
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Figure 2.4: As in figure 2.3 but for area-average relative precipitation anomalies from 1961-90 according
to the GPCC v4 observation data.

2.2.3 Climate change signal

The climate change signal is defined as the difference between the future (2071-2100) and present-
day (1961-90) time slices. The area-average response to increasing GHGs is the well known warming,
which is more pronounced in winter than in summer (Christensen et al., 2007, and references therein).
Downscaling the GCM response with a coupled RCM results in the response being weaker by up to
1K per 110 years (see figure 2.5). A similar reduction of the climate change signal is also found when
comparing the climate change signals derived from the coupled regional climate model driven with the
HadAM3h model with the climate change signal derived from the HadCM3 simulations providing the
sea-surface temperature response for the HadAM3h simulation (not shown). The damped response in
near-surface temperatures is likely due to the explicitly modeled Baltic Sea, as uncoupled RCMs do not
show such a consistently reduced response (Christensen and Christensen, 2007).

The climate change signal for precipitation is not significantly altered after downscaling with the RCAO
(figure 2.5). Even in summer, when precipitation formation is much less dependent on the boundary
conditions by the driving GCM (Christensen and Christensen, 2007), the precipitation response is very
similar in the RCM and driving GCM. This indicates that, even though we get a more realistic repre-
sentation of precipitation in summer with RCMs (see section 2.2.1), the response to GHG forcing is not
strongly dependent on the model resolution.
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Figure 2.5: Anthropogenic climate change signal defined as the difference in 30-year mean area-average
temperature (left) and precipitation (right) for the period 2071-2100 minus 1961-90. The solid red lines
denote the climate change signal of the coupled regional climate model simulation, the dashed red lines
the climate change signal of the GCM for emissions according to the SRES A2 (dark red) and B2 scenario
(red). The range and the middle 90 and 75 percent of the climate change signals derived from the CMIP3
simulations are indicated in shades of grey along with the median signal in black.

2.3 Conclusions

Area-average mean climate over the Baltic Sea is more realistically simulated in RCMs than in GCMs.
The improvements are most obvious for temperature in spring, when temperature strongly depends on the
simulation of snow cover and snow melt, and for precipitation in summer and autumn, when convective
and thus small-scale precipitation formation dominates. Furthermore, the variability of area-average
precipitation is slightly increased in the regional model and thus closer to the observed variability than
the variability simulated in GCMs, whereas temperature variability is reduced in the regional model.
Whether the reduction of temperature variability is due to the more realistic representation of the Baltic
Sea or due to other processes we do not know. Also we do not know whether the coupled Baltic Sea
influences low-frequency variability, as there are no long-term simulations with the coupled regional
climate model available. The response of area-average precipitation to increasing GHG concentrations
is similar in the GCM and RCM, even though precipitation in the RCM in summer and autumn is largely
independent of the driving GCM. For temperature, in contrast, we find a consistent reduction of the
GHG-induced warming in the RCM compared to its driving GCM.

We conclude, that GCM information can be used for detection and attribution studies with area-average
temperature and precipitation in the Baltic Sea catchment. If we are interested in the spatial pattern of
change, however, GCM simulations do not provide the necessary information, as important small-scale
processes are not well resolved. Therefore, the analyses presented in the following two chapters compare
the spatial pattern of change in observed precipitation and temperature to climate change projections
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2 Regional climate in global models and limited area models

derived from RCM simulations. In the last chapter we carry out a formal detection and attribution
analysis with area-average quantities using GCM data.
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3 CONSISTENCY OF OBSERVED WINTER PRECIPITATION TRENDS IN
NORTHERN EUROPE WITH REGIONAL CLIMATE CHANGE PROJECTIONS

This chapter is based on an article published in Climate Dynamics (Bhend and von Storch, 2008). The
original manuscript has been slightly changed for editorial purposes.

3.1 Introduction

When asking for proof of anthropogenic effects on our changing climate, usually “detection and attribu-
tion studies” are sought after (Hasselmann, 1993, 1997, Allen and Tett, 1999). For formal detection we
need significance of the results against natural internal variability. Consequently, the estimate of natural
internal variability is the most crucial part of a detection study.

In the present paper, we pursue a different line of analysis — motivated by the missing or highly imperfect
knowledge of natural variability in wintertime precipitation. We ask if the most recent trends are consis-
tent with what contemporary regional climate models envisage as the response to increasing greenhouse
gases (GHG) and changing aerosol concentrations. In this way, we offer the possibility to falsify the
hypothesis of a presently observable anthropogenic signal. In this setup the recent change is (apart from
uncertainties in the initial data and the preprocessing of the data) given, the response to anthropogenic
forcing, however, has to be estimated. A testable hypothesis of the above research question is “observed
change is drawn from the set of simulated responses to anthropogenic forcing”. However, as we have
reasons to believe that the estimated responses available do not represent unbiased versions of the “true”
response, we refrain from formally testing the hypothesis and collect plausibility arguments instead.

Detection, i.e. rejection of the null hypothesis of “no anthropogenic signal”” would be preferable, and the
possible outcome of our analysis, namely “no falsification”, is less interesting but nevertheless useful.
However, it is important to be aware of the limitations of our approach. Our method cannot discriminate
the plausibility of different forcing-effects but merely assess the consistency of recent changes with an a-
priori assumed mechanism, in particular increasing levels of GHGs in the atmosphere. Furthermore, we
cannot deduce a detection statement — “it is unlikely that the observed change is due to natural variability”
— from a positive outcome (“anthropogenic forcing is a good explanation for the observed trend”) of our
analysis. Obviously, a regular “detection and attribution” analysis is more informative, but our method
is applicable also in cases of considerably less data and without reference to sometimes hardly available
estimates of natural variability.

If the recent trend fails to be consistent with the expected trend, then - given all assumptions are correct -
in principle three reasons may be thought of: The model is insufficient (the expected signal is false), the
natural variability overwhelms the signal, or more than the expected mechanism is at work, for instance
decreasing concentrations of industrial aerosols in parallel to an increase of GHGs. However, due to
the lack of meaningful estimates of the natural climate variability and the response to competing forcing
mechanisms, we are not able to discriminate between these three reasons using the analysis as presented
in this publication.
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3 Consistency of winter precipitation trends with climate change projections

We focus on wintertime (DJF) precipitation in the Baltic catchment (denoted by solid grey contours in
figures 3.2, 3.3, and 3.4) and northern European land areas (e.g. figure 3.2) as we expect the largest
changes due to anthropogenic forcing to occur in this season. Furthermore, we know that wintertime
precipitation is mainly large scale and thus more reliably simulated by climate models.

3.2 Materials and Methods

3.2.1 Observations

Trends in observation data are computed using the well-known gridded data set of the Climatic Re-
search Unit (CRU TS 2.1, Mitchell and Jones 2005). These fields consist of monthly precipitation totals
on a 0.5x0.5 degree latitude-longitude grid available for the period from 1901 to 2002. The gridded
observations have further been interpolated to the rotated latitude-longitude grid described in the next
section in order to keep the effective grid box area comparable within the research domain. Trends in the
observation data have been calculated using ordinary least squares linear regression.

It has been claimed that the CRU TS 2.1 data set is not suited for detection and attribution studies as the
station series have not previously been homogenized and possible effects of urban development and land
use changes are still present in the data. However, we expect the data to sufficiently reflect precipitation
development in northern Europe during the last decades of the twentieth century due to the large number
of stations entering the analysis and assuming that most of the inhomogeneities are not systematic.

3.2.2 Anthropogenic climate change signal estimates

The anthropogenic climate change signal is derived from time slice experiments with a regional climate
model. Using well separated (in this case 110 years) time slices to estimate the anthropogenic climate
change signal has the advantage of increasing the signal-to-noise ratio. In contrast, deriving the anthro-
pogenic fingerprint from transient climate change simulations for the period under investigation (here
1973-2002) requires a large ensemble in order to get a noise free fingerprint. Such large ensembles of
transient regional climate change experiments are not available at the moment. We try to capture the
range of probable responses by looking at the different climate change projections, well aware of the fact
that we might underestimate this range considerably.

The set of regional climate model simulations used in this paper consists of experiments run with the
Rossby Centre regional Atmosphere-Ocean model (RCAO) of the Swedish Meteorological and Hydro-
logical Institute (SMHI). These experiments have been carried out as part of the EU project PRUDENCE
and are described in detail in Riisénen et al. (2004), Kjellstrom (2004), and references therein. The
atmospheric part of the RCAO has been run on a rotated latitude-longitude grid with a grid spacing of
0.44° (approx. 49 km).

For each of the two different driving global models, the ECHAM4/OPYC (Roeckner et al., 1999) and
HadAM3H (Gordon et al., 2000), a control run representing present day conditions (1961-1990) and
two scenario runs (2071-2100) based on IPCC SRES A2 and B2 scenarios have been run. The regional
anthropogenic change signals for the different driving GCMs and scenarios have been defined as the
difference between scenario and respective control run means scaled to change per decade. As we have
only two “points” along the time axis, namely the change of 30 year mean precipitation from 1961-90 to
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3.2 Materials and Methods

2071-2100, we scale the projections by assuming a linear development between 1961-2100; the validity
of this assumption is discussed at the end of this section. The signal is further scaled to change per
decade. Hence, we have a set of four regional climate change projections available, which are referred to
as HadAM A2 (B2) and ECHAM A2 (B2) in the following according to the driving GCM and emission
scenario used.

Underlying to our analysis are several assumptions, which are listed in the following:

First, we assume that our contemporary models are good enough for projecting anthropogenic climate
change. We believe that they are, but we have to acknowledge that a conclusive proof of that assumption
is not possible at this time.

Second, we presume that regional climate models - especially when coupled with an ocean model and
thus resulting in much more realistic sea surface temperatures in the Baltic Sea - provide more realistic
estimates of the present and future climates in this region than GCMs do.

Third, the response to anthropogenic forcing is assumed to be linear. This is supported by the analysis
of climate change projections with different GHG forcings (SRES A2 and B2) which vary mainly in
magnitude (Rédisdnen et al., 2004). Additionally, the global mean response to anthropogenic forcing is as
a first approximation linear as well (Cubasch et al., 2001).

The significance of the climate change estimates has been assessed using the lookup table test as de-
scribed in (Zwiers and von Storch, 1995). This modified t-test takes into account that the data in the
two samples (1961-1990 and 2071-2100) are autocorrelated. In order to get a conservative estimate of
the autocorrelation coefficient, we have set negative autocorrelation estimates to zero. Although this test
accounts for temporal interdependence of the observations, the spatial correlation is not dealt with in
particular. The above mentioned test indicates whether the estimated response could be due to internal
model variability. The influence of high-frequency variability is expected to be small (this is supported
by the results of the adjusted t-test). Still, as we do not use an initial condition ensemble, we cannot
quantify the influence of low-frequency variability on the climate change scenarios.

3.2.3 NAO representations and NAO signals

We use a station based NAO index, which is defined as the difference in normalized monthly sea level
pressure (SLP) between Reykjavik and Gibraltar according to Jones et al. (1997). The NAO index in
the set of regional climate model simulations has been derived accordingly from the respective SLP
fields. The reference period for the normalization of SLP time series is 1961-1990. The variability in the
dimensionless NAO index based on observations is higher than the variability based on the two different
1961-1990 representations in the regional model simulations with a standard deviation of 1.46 in the
observations and 1.14 (1.09) in the HadAM (ECHAM) simulation.

The signal or fingerprint of the NAO is defined as the fraction of the variability in wintertime precip-
itation, which covaries with the NAO index. Thus, we regress the detrended precipitation time series
on the detrended NAO index for each grid box separately using ordinary least squares estimation of the
parameters of the linear regression. The slope of the regression is the NAO signal or fingerprint. This
signal is removed from the observations by subtracting the product of the trend in the NAO index times
the NAO signal from the trend in the observations. From the climate change projections, we remove the
NAO fingerprint by simply subtracting the respective NAO fingerprint times the difference in the average
NAO index for the periods 1961-90 and 2071-2100.
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3 Consistency of winter precipitation trends with climate change projections

3.2.4 Comparing the patterns of change

The comparison of recent and expected trends R and E may be broken down by considering the dimen-

sionless patterns R* = ”%” and E* = ﬁ, and the norms ||R|| and ||E||. The latter are the intensities of the

pattern and are defined as follows:
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The patterns are compared with the pattern correlation coefficient (PCC, equation 3.2), which is different
from the centered pattern correlation and uncentered cross-moment introduced in Santer et al. (1993).
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p is bound by 1, i.e., |o| < 1. We use uncentered pattern correlation because the information about a
human induced change is both in the spatial mean and the spatial variability of the pattern.
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Furthermore, we use a bootstrap test to investigate the range of PCCs of randomly generated trend fields
with a spatial covariance structure similar to that of precipitation trends. Therefore, we repeatedly (200
times) randomly select thirty years of winter precipitation from the 102 available years and compute the
trends. We then calculate PCCs for every two different trend fields once, giving us an ensemble of 19900
randomly generated PCCs. For this set of PCCs, we compute the percentiles. Additionally, as we know
that the data might be autocorrelated, we repeat this experiment by randomly selecting groups of five and
fifteen consecutive years, this technique is known as the moving blocks bootstrap (Wilks, 1997). It is
shown, that for both the Baltic catchment and all of northern Europe, the distribution broadens and thus
the percentiles increase (see table 3.1).

Table 3.1: Percentiles of PCCs of trends from randomly selected precipitation fields for the Baltic catch-
ment and northern Europe (in brackets).

Percentiles 95th 98th 99th

1 year 0.592 (0.525) 0.690 (0.618) 0.742 (0.672)
5 years 0.623 (0.568) 0.718 (0.666) 0.769 (0.721)
15 years 0.688 (0.638) 0.792 (0.753) 0.852 (0.825)
NAO removed

5 years 0.669 (0.602) 0.758 (0.697) 0.805 (0.749)

We use the results derived from the moving block bootstrap experiment with a block length of five years,
however the selection of the block length is subjective. According to Wilks (1997), the appropriate block
length is dependent on the autocorrelation structure of the data under investigation and should thus be
derived individually at each grid point. In contrast, one should use the same block length for all variables
in multivariate problems. Thus, the ideal block length cannot be computed as at least one of the two
criteria is violated. However, additional analyses with Wilks (1997) rule for choice of the block length
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3.3 Observed and simulated changes in winter precipitation totals

have shown that - assuming first order autocorrelation - no block lengths larger than four are found within
the domain.

The respective histograms of PCCs for the Baltic catchment and northern Europe are shown in figure
3.1. The percentiles of the random PCCs are listed in table 3.1, the uncertainties (2 standard deviations
estimated from 20 repeats of the above experiment) for these percentile estimates range from 0.02 to 0.03
for the Baltic catchment (0.03 to 0.04 for northern Europe). The bootstrap estimates of random PCCs for
the Baltic catchment and northern Europe after removing the NAO signal lie slightly higher as shown in
the last row of table 3.1.
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Figure 3.1: Histogram of PCCs of trends of randomly selected precipitation fields. The shaded bars refer
to the PCCs for the Baltic catchment, the hatched bars refer to northern European PCCs. The 5 and 95
percentiles for the Baltic catchment (northern Europe) are indicated by a triangle (circle).

3.3 Observed and simulated changes in winter precipitation totals

3.3.1 Trends in observation data

We use 30-year trends in order to assess the most recent changes. On the one hand, the period under
investigation should be sufficiently short, as we know from global and continental scale results, that the
anthropogenic signal in temperature emerges in the last few decades from natural variability (Hegerl
et al., 2007). The influence of natural variability on the observed trend reduces with increasing trend
length on the other hand.

When different trend lengths are used, the pattern remains mostly unaffected. The magnitude of the
trends, however, decreases with increasing trend length due to either a reduction of the fraction of trends
induced by natural variability and/or due to a weaker anthropogenic signal in the mid-twentieth century
(not shown).

Figure 3.2 shows the 30-year changes in seasonal winter (DJF) precipitation according to the gridded
CRU data. The pattern is a general increase over most of northern Europe with regions of slight de-
crease in central Finland and southern Poland. The maximum positive (negative) trend within the Baltic
catchment amounts to 31.01 (-14.28) mm per decade (seasonal totals). On average, the Baltic catchment
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3 Consistency of winter precipitation trends with climate change projections

has become wetter by 8.24 mm per decade. Highest relative rates of change are found over the Baltic
states with rates of change up to 20.62% of 1961-1990 mean per decade, which corresponds roughly to a
doubling of the seasonal precipitation during the period under investigation. An overview of the spatial
statistics of the relative rates of change for the Baltic catchment based on the changes in CRU is given in
table 3.2.

percentage of 1961-1990 mean per decade
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Figure 3.2: Trends in winter (DJF) precipitation totals 1973-2002 in units of relative change compared
to the 1961-1990 mean precipitation (according to the CRU TS 2.1 data), negative trends are marked by
thin solid contours.

Table 3.2: Spatial statistics of the observed and expected changes (in units of percentage change of the
respective 1961-90 mean per decade) for the Baltic catchment. Values in brackets refer to the spatial
statistics for the Baltic catchment after removing the NAO signal.

‘ CRU range of RCAO scenarios

spatial mean | 6.97 (4.97) 1.89-4.38 (1.79 - 3.70)
spatial std 5.27(4.90) 0.42-0.97 (0.63 - 1.55)
intensity 8.73(6.98) 1.94-4.49(1.90-4.01)

It is well known that a part of the precipitation trend, in particular along the Atlantic coastline, is strongly
affected by the North Atlantic Oscillation (NAO, Lamb and Peppler, 1987, Wanner et al., 2001). The
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3.3 Observed and simulated changes in winter precipitation totals

NAO signal in wintertime precipitation is a general increase (decrease) in precipitation with increasing
(decreasing) NAO index over most parts of the domain under investigation, which is strongest in southern
Norway and along the Norwegian coast (not shown). In view of our hypothesis, that the signal-to-noise
ratio of anthropogenic climate change in the NAO would be low (Rauthe et al., 2004), we subtracted
the NAO signal from the precipitation trends (Figure 3.3 left panel). Furthermore, a number of studies
conclude that the observed increase in the NAO is at least partially externally forced (Osborn et al., 1999,
Gillett et al., 2002a, Gillett, 2005, among others), but the simulated trend in the NAO is generally smaller
than observed (Gillett et al., 2002a, Osborn, 2004). Excluding the NAO signal thus also excludes a part
of the variability from the observations, which is not reproduced by present day climate models. As a
consequence, we expect the similarity of the patterns of the observed and simulated changes to increase
and the intensities of the changes to converge.

percentage of original trends
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Figure 3.3: Left panel: Trends in winter (DJF) mean precipitation 1973-2002, according to the CRU TS
2.1 data after the removal of the NAO signal. Right panel: percentage of trend after the removal of the
NAO signal compared to the full trend shown in Figure 3.2.

The removal of the NAO signal leads to a considerable reduction in precipitation trends along the west
coast of Europe as shown in the right panel of figure 3.3. The spatially averaged 30-year trend over the
Baltic catchment decreases by 2.31 mm/decade when removing the NAQO; the largest and smallest trends
over the Baltic catchment are also reduced (31.01 mm/decade vs. 26.47 mm/decade; -14.28 mm/decade
vs. -13.74 mm/decade). Nevertheless, the distribution is smoother (spatial standard deviation = 5.88
mm/decade) without the NAO than with the NAO (6.55 mm/decade). However, in central Finland and
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3 Consistency of winter precipitation trends with climate change projections

in southern parts of the Elbe catchment, subtracting the NAO signal increases the trends. These findings
qualitatively apply to wider northern Europe as well.

3.3.2 Expected changes derived from climate change scenarios

Figure 3.4 shows the anthropogenic climate change projections for winter precipitation as derived from
a pair of 30-year simulations, namely 2071-2100 and 1961-1990. Apart from the scenarios as introduced
in section 3.2.2, the respective mean change of the scenarios forced with SRES A2 and B2, HadAM and
ECHAM as well as the overall mean is shown in figure 3.4. The nine maps are to first order similar
with increasing precipitation all over the Baltic catchment and in most of northern Europe. The major
difference among the projections is located in an area just outside the Baltic catchment. Along the
coastline in northwestern Norway, the HadAM simulations project a decrease in precipitation whereas
the experiments driven with the ECHAM model show an increase.

Spatially averaged future changes in the Baltic catchment are larger in the ECHAM driven simulations
(7.27 mm per decade) than in HadAM driven simulations (4.12 mm per decade) as shown in figure 3.4.
In accordance with the stronger forcing, the mean response to the A2 emission scenario is higher than
the response to B2 (6.59 and 4.80 mm per decade). Additionally, it is found that the spatial standard
deviation of HadAM trends is lower (1.56 and 0.76 mm per decade for A2 and B2) than the standard
deviation of the ECHAM simulations (2.38 and 1.39 respectively).

We have further assessed the significance of the projected anthropogenic change according to the regional
model simulations. It is shown that for most of the region under consideration, the anthropogenic signal
is hardly describable as a result of internal model variability. For the Baltic catchment, all of the changes
as projected in the ECHAM driven runs have found to be significant at the 5% level (one-sided t-test
taking into account autocorrelation, see section 3.2.4), whereas the fraction of significant changes is
97.7% (96.6%) for HadAM A2 (B2).

Extending the research domain to all of northern Europe decreases the amount of grid boxes where the
projections are significantly different from internal climate variability. Significant changes are found
for 93.4 (90.9) percent of all land grid points in HadAM A2 (B2) and 90.7 (94.7) percent in ECHAM
A2 (B2). As shown in figure 3.4, the regions where the projections are not significantly different from
internal variability are located on the northwestern coast of Norway and Finland in the HadAM driven
simulations, whereas insignificant changes are found in the southeastern part of northern Europe in the
ECHAM driven simulations.

The similarity of the different climate change projections has been assessed using pattern correlation
as introduced in section 3.2.4. As the observation data are available over land only, the PCCs between
individual projections have been calculated using land grid boxes only as well. All of the climate change
projections share very high PCCs of 0.941 (HadAM B2 with ECHAM A2) to 0.996 (ECHAM A2 with
B2) for the Baltic catchment. When the area of interest is extended to wider northern Europe, the PCCs of
projections driven with different GCMs are considerably reduced (0.831 to 0.928), whereas the patterns
of simulations with different emission forcings with the same GCM are very similar with PCCs larger
than 0.98.

Furthermore, the NAO signal has been removed from the simulations and climate change signals have
been computed from the residuals. A consistent increase in the NAO index is found for all simulations.
This change in the NAO index is stronger in the ECHAM simulations, with an increase in the difference
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3.3 Observed and simulated changes in winter precipitation totals
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Figure 3.4: Anthropogenic climate change signal in DJF precipitation according to RCAO simulations
with the four individual climate change projections in the upper left four panels and the respective mean
of simulations driven with the same GCM (same emission scenario) in the bottom line (rightmost col-
umn). Negative projected changes are marked by thin solid contours. The hatched areas denote regions
where the climate change projections are not significant at the 5% level (see section 3.2.2 for details); in
the bottom line and rightmost column, areas where the projection of at least one of the four projections
is not significant are hatched.
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3 Consistency of winter precipitation trends with climate change projections

between the normalized SLP series of the grid box Gibraltar and Reykjavik of 0.39 (0.61) per 110 years in
the A2 (B2) simulation, than in the HadAM driven ones with an increase of 0.22 (0.20). The NAO signal
in the simulations (not shown) is very similar to the NAO signal in the observations (e.g. figure 3.3), with
increasing (decreasing) precipitation in northwestern Europe with increasing (decreasing) NAO index
(not shown).

3.3.3 Correspondence of observed trends with anthropogenic climate change scenarios

The similarity of observed with possible future patterns of change is very much dependent on the sce-
nario used (e.g. table 3.3). In general, the pattern of observed trends shows more similarity with the
ECHAM driven simulations than with HadAM ones. Furthermore, the stronger greenhouse gas forcing
(SRES A2 scenario) leads to higher pattern correlation scores. Highest pattern similarity (0.85 for the
Baltic catchment, 0.80 for northern Europe) is thus found when comparing the observed trends with the
ECHAM A2 simulation.

Table 3.3: Pattern correlation (see section 3.2.4) of precipitation in DJF (observation vs. simulation) for
the Baltic catchment and northern Europe (in brackets). Significant (bootstrap test, 5 percent) results
are labelled with an asterisk.

PR.E CRU NAO removed

HadAM A2 | 0.83* (0.63%)  0.76* (0.57)
HadAM B2 | 0.75% (0.54)  0.64 (0.45)

ECHAM A2 | 0.85% (0.80%)  0.75% (0.71%)
ECHAM B2 | 0.84* (0.77%)  0.74* (0.68%)

The observed PCCs based on the Baltic catchment all lie above the 95th according to the bootstrap intro-
duced in section 3.2.4. This is not the case when extending the research area to all of northern Europe.
The PCCs of the observed trends and ECHAM driven regional model simulations are significantly dif-
ferent from random PCCs whereas PCCs based on HadAM AZ2 lie close to and PCCs based on HadAM
B2 lie below the 95th percentile of random PCCs.

The removal of the NAO signal leads to slightly different trend patterns in the observations as illustrated
in figure 3.3 and in the climate change projections (not shown). In general, this causes a reduction of the
PCCs which is most pronounced for the HadAM B2 simulation (reduction of 15 percent, table 3.3). In
combination with the slightly higher significance levels when removing the NAO, PCCs are less often
significantly different from random pattern correlation. For the Baltic catchment the pattern similarity is
significant at the five percent level for all projections except the HadAM B2 scenario, whereas the PCCs
for northern Europe fail to be significantly different from randomly generated PCCs for both HadAM
simulations.

As a consequence of the normalization of the PCC by the intensities, no conclusions can be drawn about
the similarity of the magnitude of the changes with pattern correlation. Therefore, we further compare the
spatial mean change and the intensity of the change (table 3.2). In order to account for systematic biases
between model and observation data, we compare relative changes only. It is found that the changes in
HadAM simulations are weaker than in ECHAM simulations and in accordance with the weaker GHG
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3.4 Discussion

forcing in the SRES B2 driven projections weaker than in simulations run with SRES A2. Thus leading
to an area mean change of 1.89 (HadAM B2) to 4.38 percent per decade (with respect to the 1961-90
mean) for the Baltic catchment. The spatial mean change in the observation data is considerably higher
with 6.97 percent per decade for CRU for the period 1973-2002. The discrepancy between the climate
change scenarios and observed changes is even larger when looking at the intensity of the change, and
thus taking the spatial variability of the trend fields into account as well. For wider northern Europe, the
spatial statistics show qualitatively similar features (not shown).

When looking at the spatial statistics after removing the NAO signal from the data, we find the following.
As discussed in section 3.3.1, the removal of the NAO leads to a considerable reduction in the spatial
mean trends for the period from 1973-2002. As the removal affects mainly the spatial mean trend, the
intensities are still much higher in the observations after removing the NAO signal than in the climate
change scenarios.

Both PCCs as well as the intensities are computed limited to regions of significant change in the climate
change projections as well. The effect on the results for the Baltic catchment is negligible as only very
few grid points are excluded from the analysis. For northern Europe, however, we find a considerable
increase in pattern similarity statistics which is more pronounced for the HadAM projections than for
projections driven with ECHAM. Weakest pattern similarity is still found when comparing the observa-
tions with HadAM B2. Focussing on regions with significant changes leads to a slight increase in the
intensities of the climate change projections and thus decreases the ratio of intensities.

3.4 Discussion

3.4.1 Methodical considerations

It is shown that PCCs are sensitive to both the magnitude of the mean change and the pattern of the change
as an extension of the analysis from the Baltic catchment to all of northern Europe and the comparison
of results with A2 and B2 emission scenarios show. Thus we conclude, that the method is illustrative
even in situations where the climate change scenarios deviate to some extent.

3.4.2 Regional climate change scenarios

We use a set of climate change projections in our analysis indicating the range of the response to anthro-
pogenic forcing. A priori, we consider all of the individual projections as possible and equally likely.
The projected signal for the Baltic catchment is fairly consistent in both magnitude and pattern taking
into account the differences in GHG forcing for the A2 and B2 scenarios (e.g. CO, induced radiative
forcing of 4.42 (2.73) Wm™2 in 2100 with respect to 2000 for the SRES A2 (B2) scenario, Ramaswamy
et al. 2001). However, there are still large discrepancies in the way different GCMs model the response
of circulation (and as a consequence precipitation as well) to anthropogenic forcing as illustrated by the
situation along the Norwegian coast.
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3 Consistency of winter precipitation trends with climate change projections

3.4.3 Comparison of observed and simulated changes
Pattern correlation

The pattern of observed trends in winter precipitation in the Baltic catchment has been found to be
consistent with all of the regional climate change scenarios used in this analysis (table 3.3). Furthermore,
it is very improbable (with a probability of error of less than 5%) that the correlation found between
patterns of observed and expected changes is random. This holds true for northern Europe as well,
however, the observed patterns are considerably less consistent with the HadAM driven scenarios, due to
a completely different response in some parts of northern Europe compared with the ECHAM scenarios.
Even though the scenarios differ much more when extending the research area from the Baltic catchment
to northern European land areas, we conclude that the recently observed pattern of change is consistent
with the climate change scenarios at least for the projections driven with ECHAM.

Above findings are strengthened when limiting the analysis to regions where the changes in the sce-
narios have been found to be significant according to an adjusted t-test. The exclusion of regions with
insignificant climate change projections increases the signal-to-noise ratio of anthropogenic change (as-
suming that the climate models are able to model both the natural variability and the response to an-
thropogenic forcing correctly) and thus it is not surprising that we find better consistency between the
modelled response and observed changes. Furthermore, the differences in consistency between HadAM
and ECHAM driven simulations for northern Europe vanishes, as the regions with insignificant changes
in the projections are in this case identical to the regions where the climate change scenarios differ
most.

Further insight is gained when removing the NAO signal from both the observations and the climate
change simulations. The correspondence of the changes in the residuals is considerably lower than in the
full set, and we conclude consistency between observed and projected changes only for ECHAM driven
scenarios (and HadAM A2 as well for the Baltic catchment).

The hypothesis that the signal-to-noise ratio of anthropogenic change in the NAO would be low is dis-
cussed in the following. The projected increase in the NAO index from 1961-1990 to 2071-2100 ranges
from 0.2 in the HadAM simulations to 0.38 (0.61) in ECHAM A2 (B2). Thus, a consistent increase is
shown among all four climate change projections, which is in line with the findings of Stephenson et al.
(2006). However, the increase is significant on the five percent level for the ECHAM B2 scenario only
according to a t-test as introduced in section 3.2.4. Thus most of the changes in the NAO in the set of
model simulations could be due to internal variability alone, which in turn supports the basic assump-
tion that the signal-to-noise ratio of anthropogenic change in the NAO is low. In opposition to these
findings, Gillett et al. (2002a) find that the response of the NAO to GHG forcing in both the ECHAM4
and HadCM3 (a coupled version of the model used to drive the RCM simulations used in this study) is
not explicable by internal variability alone. This discrepancy could result from differences in the defi-
nition of the NAO index; Osborn (2004) shows that the response to GHG forcing is much more model
dependent when using a station based NAO index compared to pattern based indices.

Additionally, the considerable differences between ECHAM and HadAM driven simulations point again
towards a different response of circulation to anthropogenic forcing in these models. Furthermore, it is
interesting to see that the stronger greenhouse gas forcing leads to a weaker increase in the NAO in the
ECHAM driven scenarios. This could either be a consequence of a nonlinear response to the imposed
forcing or due to the dominance of natural variability in the NAO estimates.

28



3.4 Discussion

The observed trend in the NAO index of Jones et al. (1997) from 1973 to 2003 is 0.292 per decade.
Thus, the projected increase in the NAO index amounts to 6-19% of the observed trend in the NAO
only. It is a well-known fact that present day climate models underestimate the variability of the NAO
and presumably also the response to increasing GHG (Osborn, 2004, Stephenson et al., 2006). Thus we
conclude that either the projections of the NAO increase are correct and hence the signal-to-noise ratio
of anthropogenic change in the NAO is low, or the response of the NAO to increasing GHG is stronger
than simulated. The latter would have severe consequences for all conclusions drawn from these regional
climate change projections as a stronger response of the NAO to GHG forcing would very likely lead to
a stronger response of precipitation as well.

Magnitude of the rate of change

When comparing the spatial mean change, we find that the models underestimate the most recent rate of
change by a factor of 1.4 (ECHAM A2) to 3.3 (HadAM B2) for the Baltic catchment. The same applies
for all of northern Europe as well. In contrast, when removing the NAO signal, we find considerably
better agreement of the observed area mean change with the climate change projections. Nevertheless,
it is shown that the climate change simulations generally underestimate the observed change. Whether
this mismatch in magnitude of the area mean changes is in any way significant is hard to infer from
the data at hand. With respect to uncertainties in the observation data and interpolation, further experi-
ments have shown, that for the Baltic catchment, the most recent area mean trends are significantly (with
a probability of alpha-type error of 5 percent) different from the estimated area mean response when
adding white noise with a standard deviation of 5.6 percent of the respective 1961-90 mean. However,
as systematic biases have not been removed from the data (New et al., 1999, Mitchell and Jones, 2005)
the error mainly due to wind-induced undercatch could be larger (Adam and Lettenmaier, 2003, Yang
et al., 2005). Furthermore, the robustness of the conclusions to a shift of the period analyzed has been
investigated. For the Baltic catchment area mean changes we find that 8 (11) of the last 10 (20) 30-year
trends available are higher than the topmost anthropogenic change estimate (ECHAM A2). Whether
these results indicate an emerging anthropogenic signal or fluctuations due to natural variability can-
not be inferred. Finally, it should be noted that even though we analyze relative precipitation changes,
and thus systematic biases between the simulated and observed precipitation have little influence on the
result, modelling deficiencies could severely influence the conclusions drawn.

As mentioned before, given all assumptions are correct, there are three possible reasons for this mismatch
in the spatial mean change.

First of all, it could be due to the fact that the regional models are not able at all to simulate the response
to anthropogenic forcing.

Second, the models could severely underestimate the response because more than the imposed forcing
is at work or because the sensitivity to anthropogenic forcing is far to low. Gillett et al. (2004) and
Zhang et al. (2007) conclude that the GCMs used in their global-scale detection and attribution studies
considerably underestimate the response of circulation and precipitation changes to external forcing.
However, Lambert et al. (2004) also find a strong influence of volcanic forcing. In contrast to the studies
mentioned above, our simulations include anthropogenic changes only, thus we should keep in mind, that
the response to natural forcing could be dominant in the observations. Apart from changes in aerosols
due to volcanic eruptions, the main candidate for an additional forcing mechanism which could have a
large effect on regional circulation and precipitation are industrial aerosols. According to (Réisédnen et al.,
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2004), the ECHAM and the HadAM model both include changes in global scale aerosol concentrations,
and treat the contribution to the radiative forcing explicitly. Furthermore, they argue, that the RCAO is
not very sensitive to local changes in radiative forcing, since most of the climate change signal comes
via the boundary conditions from the GCMs. However, mainly the indirect aerosol effect could cause
strong and small-scale response in precipitation (Ramanathan et al., 2001) not captured in the models yet.
Additionally, the scientific understanding of both the direct and indirect aerosol effects is still considered
medium to low (Forster et al., 2007), and thus there is ample room for speculation.

Third, the signal-to-noise ratio of anthropogenic precipitation change is very small. Assuming that the
model projections are right in both intensity and pattern, we conclude the following: a large fraction of
the recent 30-year trends in wintertime precipitation are due to natural variability. The removal of the
NAO signal leads to a considerable decrease in the ratio of the intensities as shown in table 3.2. Thus,
by excluding the NAO signal we increase the signal-to-noise ratio, which in turn supports the basic
assumption, that the signal-to-noise ratio in the NAO is low.

Looking at the intensity of the change, and thus taking the spatial variability of the changes into account
as well, the difference between observations and climate change simulations increases. Whether this is
due to the fact that the climate change signal is large scale, and thus exhibits only little spatial variability
over a small domain, cannot be determined. Alternatively, the different spatial scales represented in the
gridded observations compared to the scales modelled in the RCM setup, could account for the difference
in intensity as well.

3.5 Conclusions

Our analyses have shown that pattern correlation along with a comparison of the intensity of the changes
as presented in this paper is suitable to assess the consistency of observed trends with climate change
projections. The method as presented here is also applicable when natural variability estimates are miss-
ing and thus it is very useful when investigating climatic parameters for which long-term observations
are not available and which are statistically less well behaved than surface temperature.

According to pattern correlation studies, anthropogenic forcing is a plausible explanation of the observed
changes in wintertime precipitation over the Baltic catchment. Bootstrap experiments also show that it is
unlikely that these pattern correlations are random. The situation is a little different when extending the
area of interest to all of northern Europe. In this larger area, the climate model simulations project less
consistent changes and consequently PCCs are only significantly different from random PCCs for some
of the simulations. Thus the selection of the region under consideration has a great effect on the result.
However, it is encouraging that we find consistency of the observed trends with regional climate change
scenarios in regions where the different simulations project a consistent and significant change and less
so in regions where the climate change scenarios differ.

The magnitude of the observed area mean change, however, is higher than the magnitudes as projected
by the regional climate model. Hence, we cannot explain the observed trends in winter precipitation with
increasing greenhouse gases alone. Both additional forcing mechanisms (such as the indirect aerosol
effect) not included in this model setup, and a general underestimate of the response to anthropogenic
forcing are possible explanations for the mismatch in the rate of change. Additionally, another important
factor possibly contributing to the trends in the observation data is natural variability, the importance of
which cannot be inferred using the approach introduced here.
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4 IS GREENHOUSE GAS FORCING A PLAUSIBLE EXPLANATION FOR THE
OBSERVED WARMING IN THE BALTIC SEA CATCHMENT AREA?

This chapter is based on an article published in Boreal Environment Research (Bhend and von Storch,
2009). The original manuscript has been slightly changed for editorial purposes.

4.1 Introduction

We compare observed changes in screen temperatures with the response to anthropogenic forcing, in
our case changing greenhouse gas (GHG) and aerosol concentrations in the atmosphere, estimated from
simulations with a regional atmosphere-ocean climate model. Since a large fraction of the variability of
temperature in Northern Europe is linked to the North Atlantic Oscillation (NAO; van Loon and Rogers
1978, Lamb and Peppler 1987, for a review see Wanner et al. 2001), we also compare the changes after
removing the fingerprint of the NAO from both the observations and the anthropogenic change estimates.
Hypothesizing that the anthropogenic signal in the NAO is low, we expect an increase in correspondence
of the observed and expected change after removing the NAO signal.

By comparing observed changes to the estimated response to a given forcing mechanism, we offer the
possibility to falsify the hypothesis that the observed change is mostly related to this mechanism. Thus,
we are looking for the consistency of the observed change with the change related to an a-priori known
forcing (for a more in-depth discussion on the methodology see section 3.1). This consistency check
could be thought of as a sort of “attribution without detection”. In this set-up, the recent change is
given; the expected signal, however, is unknown and has to be estimated from model simulations. As
there are only a few simulations from coupled regional climate models available, we cannot derive a
reasonable estimate of the variability of the response to anthropogenic forcing (based on sufficiently
many independent realizations). Therefore, we do not frame our examination as a formal statistical test
with the null hypothesis “the observed change is drawn from the set of scenarios”. We collect plausibility
arguments from the quantitative comparison of the few scenarios with the observed change instead. Even
if inferior to a full statistical test, our method generates instructive results in particular in cases where
only little data exist.

If we conclude that the observed change is not consistent with the assumed forcing mechanism, then
three possible reasons may be thought of: The simulated response to anthropogenic forcing is wrong,
the assumed mechanism is overridden by another mechanism not accounted for in the simulations, or
the signal-to-noise ratio of an anthropogenic change is too low and thus a large fraction of the observed
trend is due to natural variability. On the other hand, if we find consistency of the observed change
with the assumed forcing mechanism, we conclude that the assumed forcing is a plausible explanation of
the observed change. Note, however, that consistency is not equivalent to the rejection of the detection
hypothesis, “the observed change is drawn from a set of changes due to natural variability.”
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4.2 Materials and Methods

4.2.1 Observed temperature trends

The observed changes are computed based on the monthly gridded temperature data set CRU TS 2.1 of
the Climatic Research Unit (Mitchell and Jones, 2005). These data are available over land on a regular
latitude longitude grid with 0.53 grid resolution for the period from 1901 to 2002. We define recent
change as the trend over the last 30 years available, i.e. 1973-2002, and we estimate the slope of the
regression line using least squares. The domain of interest is the Baltic Sea catchment area (Fig. 4.1).
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Figure 4.1: Seasonal anthropogenic climate change signal for daily mean temperature in the Baltic catch-
ment according to the different climate change simulations with the RCAO model (first four columns) and
the observed trend for the period 1973 to 2002 according to the CRU TS 2.1 data set (rightmost column).
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4.2.2 Climate change scenarios

We use a set of simulations with the Rossby Centre regional Atmosphere-Ocean model (RCAO) of the
Swedish Meteorological and Hydrological Institute (Kjellstrom, 2004, Riisédnen et al., 2004). The set of
simulations includes six time slice experiments of 30 years driven with two different global models, the
HadAM3h (Gordon et al., 2000) and the ECHAM4/OPYC (Roeckner et al., 1999). For each of the two
different GCMs, one simulation with GHG and aerosol concentrations for the period 1961-1990 and two
simulations for the period 2071-2100 using GHG and aerosol concentrations from the SRES A2 and B2
scenarios are available.

The response to anthropogenic forcing for a certain period would ideally be estimated from transient
climate model simulations with and without anthropogenic forcing. However, as the low signal-to-noise
ratio of the anthropogenic change on the regional scale would require a very large ensemble of transient
simulations, which is presently not available, we estimate the anthropogenic signal from time slice exper-
iments. In order to be able to do so, we have to make assumptions on the evolution of the anthropogenic
signal. First, we assume that the spatial pattern of the response does not depend on the temporal evolu-
tion of the forcing. This hypothesis is supported by different analyses of global scale simulations (e.g.
Meehl et al. 2007a: fig. 10.8). Second, we assume a linear development from 1961 to 2100, and thus we
presumably overestimate the anthropogenic signal in the last decades of the 20th and the first decades of
the 21st century. However, compared to the differences between the single realizations (due to different
forcing and different driving GCMs) this possible overestimate is negligible.

We define the anthropogenic signal as the difference between the future (2071-2100) and control (1961-
90) period mean climate. The resulting signal is further linearly scaled to change per decade. In ac-
cordance with the GCM and emission scenario used, we refer to the respective anthropogenic change
estimates as HadAM A2 and B2 and ECHAM A2 and B2.

4.2.3 NAO representations and NAO signals

We use a station based NAO index, which is defined as the difference in normalized monthly sea level
pressure (SLP) between Reykjavik and Gibraltar according to (Jones et al., 1997). The NAO index in
the set of regional climate model simulations has been derived accordingly from the respective SLP
fields. The reference period for the normalization of SLP time series is 1961-1990. The variability in the
dimensionless NAO index based on observations is higher than the variability based on the two different
1961-1990 representations in the regional model simulations with a standard deviation of 1.46 in the
observations and 1.14 (1.09) in the HadAM (ECHAM) simulation.

The fingerprint of the NAO is defined as the fraction of the variability in monthly and seasonal mean
temperature that covaries with the respective NAO index. We regress the detrended temperature time
series on the detrended NAO index for each grid box separately using ordinary least squares estimation
of the parameters of the linear regression. The slope of the regression is the NAO fingerprint. We remove
the NAO fingerprint from the observations by subtracting the fingerprint times the trend in the NAO index
from the trend in the observations. From the climate change projections, we remove the NAO fingerprint
by simply subtracting the respective NAO fingerprint times the difference in the average NAO index for
the periods 1961-90 and 2071-2100.
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4 Consistency of observed warming with climate change projections

4.2.4 Pattern correlation

The comparison of the observed (O) and expected (E) pattern of change is carried out using pattern
correlation. As the human influence on climate leads to both a change in the mean climate as well as
a change in the spatial and/or temporal patterns, we use uncentered pattern correlation as described in
equation 4.1.

2i OiE;
05 B

Where R(O, E) is the pattern correlation coefficient; O refers to the observed, E to the expected pattern
of change and i represents the dimensionality of the pattern. We investigate patterns with different
spatiotemporal resolution. These include the mean annual temperature changes both as area averages
(Ounns Eann) and as spatially 0.5a-distributed fields (Ognnx, Eannx), and the seasonally and monthly
resolved annual cycles of the change, again as area averages (e.g. Oseqs, Omon) and as spatially distributed
fields (e.g. Oseqs.x» Omon.x)- For the respective pattern correlation coefficients, the shorthand R;,;s x is used
for R(Oseas,x, Eseas,x)-

R(O,E) = 4.1)

4.3 Results

The observed change in annual near surface temperature (O,,,) for the Baltic Sea catchment area is 0.37
K per decade. The respective anthropogenic climate change signal (E,;,) ranges from 0.24 to 0.45 K
per decade (for HadAM B2 and ECHAM A2 respectively). The observed change lies inside the range
of expected changes and thus we conclude consistency of O, with E,,;,. However, due to the strong
interannual variability, the trend component in the observed 30-year time series accounts for only 11.7
percent of the total variance. After the signal of the NAO has been removed from both the observations
and climate change simulations, we find a reduction of O, to 0.32 K per decade and a slight reduction
in Egp,;, to 0.24 to 0.43 K per decade.

The annual cycle of the average anthropogenic change for the Baltic Sea catchment area is characterized
by a stronger warming in E.,, in winter (DJF) than in summer (JJA, see Fig. 4.2). In contrast to Egegs,
the annual cycle of the observed warming shows smallest warming in autumn. The differences between
the expected and observed patterns increase, if we increase the temporal resolution and compare O,
with E,,,,. The anthropogenic change estimates derived from simulations driven with ECHAM show a
pronounced annual cycle in E,,,, with strongest warming in February and weakest warming in June and
July. The simulations driven with HadAM show a slightly different pattern with smaller amplitude than
the annual cycle of E,,,, in ECHAM A2 and B2.

We find pronounced spatial variability in the pattern of observed changes (Oy,4s.) With enhanced warm-
ing in the northern part of the Baltic Sea catchment area in winter (DJF) and autumn (SON) and in the
southern part in spring (MAM) and summer (JJA). In the anthropogenic change estimates, however, spa-
tial variability is much smaller and the annual cycle of the area mean changes dominates the combined
spatiotemporal pattern (Fig. 4.1).

The pattern correlation coefficients for the different indices of surface temperature change and the differ-
ent anthropogenic change estimates used are highest for the annual change with full resolution (R, x),
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Figure 4.2: Seasonal (left panel) and monthly (right panel) area mean changes in near surface temper-
ature for the Baltic catchment. The observed trends for the period 1973 to 2002 are represented by the
heavy black line, the different anthropogenic change estimates derived from a set of simulations with the
RCAO model are represented by the thin black lines and different symbols.

with values around 0.97 (Fig. 4.3). When investigating the annual cycle, we find highest pattern cor-
relation scores for Ryeq With values larger than 0.9. With increasing spatial and temporal detail, the
pattern similarity decreases. If the pattern of change is analyzed after the fingerprint of the NAO has
been removed from both the observations and climate change scenarios, we find slightly reduced pattern
similarity compared to the pattern correlation with the full signal.

4.4 Discussion

The observed change in annual near surface temperature in the Baltic Sea catchment area is consistent
with the anthropogenic change estimates derived from regional climate model simulations. For the an-
nual area mean change, we assess consistency by comparing the magnitude of the simulated change with
the observed trend. The magnitude of the observed trend, however, is strongly dependent on the trend
length used. With increasing trend length, the magnitude of the most recent trend decreases almost lin-
early from 0.37 K per decade for 30-year trends to 0.06 to 0.07 K per decade for 70-year and longer trends
(for a review of trends of different length in subregions and at individual stations see The BACC author
team 2008). The observed decrease in magnitude of the most recent trends with increasing trend length
could be due to the weaker anthropogenic signal in the earlier parts of the 20th century or due to the
decreasing influence of natural variability with increasing trend length. The most recent 30-year and 40-
year trends in surface temperature are consistent with the anthropogenic change estimate; 50-year trends
in annual area mean temperature of 0.23 K per decade lie slightly below the lowest anthropogenic change
estimate (HadAM B2, 0.24 K per decade). We should note, however, that the anthropogenic change es-
timates are most likely biased high due to the assumption of a linear development of the anthropogenic
signal from 1961-2002. From the above-presented evidence we conclude, that the anthropogenic forcing
is a plausible explanation for the observed annual area mean trend and that this finding is robust to the
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Figure 4.3: Uncentered pattern correlation between different patterns of observed trends for the period
1973-2002 and the respective anthropogenic change patterns. The spatiotemporal resolution increases
from left to right. The shaded bars indicate pattern correlation between the observations and the mean
anthropogenic change signal of all 4 different members investigated, the whiskers denote the spread of
pattern correlation of the observed change with the individual anthropogenic change signals.

choice of trend length. Without reference to an estimate of natural variability and additional forcings,
however, we are not able to rule out alternative explanations. This is a major limitation of the method
presented here.

The annual cycle in the climate change scenarios (E;qs) is different from the annual cycle in Og,qs. The
observations show larger amplitude between minimum and maximum seasonal warming and a different
structure with minimal warming occurring in SON instead of JJA as in the scenarios (left panel in Fig.
4.2). Increasing the temporal resolution results in a noisier pattern in the observations whereas the
simulated annual cycle of changes remains smooth (right panel in Fig. 4.2). The lower amplitude in the
simulated annual cycle of the temperature change could result from deficiencies in the representation of
the large-scale circulation variability related to the NAO and atmospheric blocking in the driving GCM
(D’ Andrea et al., 1998, Osborn, 2004, Stephenson et al., 2006). Furthermore, the differences in O,y
from month to month point towards a low signal-to-noise ratio of an anthropogenic change in monthly
area mean temperatures. Part of the observed variability in the annual cycle could be due to random
variations and thus not explicable by the response to external forcing. We conclude that anthropogenic
forcing is an insufficient explanation for the observed annual cycle in seasonal and monthly temperature
changes in the Baltic Sea area.

The pattern similarity decreases with increasing spatial and temporal resolution (Fig. 4.3). Consequently,
the signal-to-noise ratio of an anthropogenic change decreases with increasing spatiotemporal detail.
This is in line with findings of various authors (e.g. Stott and Tett 1998, Zwiers and Zhang 2003). We
conclude that either the anthropogenic climate change signal is large scale (compared to the size of the
domain under investigation) or the RCM used is not able to simulate regional details with sufficient
quality — given GHG concentrations as sole forcing.
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4.5 Conclusions

Removing the NAO signal from the data previous to the analysis results in a slight reduction of the
pattern correlation. We find that the signal-to-noise ratio of an anthropogenic change is reduced by
removing the NAO signal. This indicates that our initial assumption of a negligible anthropogenic effect
on the NAO may be incorrect. This conclusion is in line with Gillett et al. (2002b), who showed that
the observed increase in the NAO index during the last decades of the 20th century is not attributable to
natural variability alone and thus a significant part of the observed changes in the NAO is anthropogenic.
However, anthropogenic forcing of the NAO remains a matter of debate, as present-day GCMs are not
yet able to reproduce fully the observed NAO variability (Osborn, 2004, Stephenson et al., 2006).

4.5 Conclusions

Often it is assumed that the observed regional climate change is at least partly anthropogenic. As a
plausibility check, we propose a simple consistency analysis. We therefore compare the most recent
observed changes in near surface temperatures with an estimate of the anthropogenic signal as proposed
by a set of regional climate model simulations. Comparing the annual area mean change in surface
temperature in the Baltic catchment, we find good correspondence with the available climate change
scenarios. The magnitude of the annual change is also similar after the NAO signal has been removed
from both the observations and the simulations.

In order to further estimate the level of detail to which observed regional features could be explained
by anthropogenic change we assess the pattern similarity of climate change patterns with different spa-
tiotemporal resolution. In all cases, the similarity of observed and expected patterns of change decreases
with increasing level of detail. Whether the loss in similarity with increasing spatial resolution is due to
limitations in our ability in simulating small-scale structures of the climate change pattern, or a conse-
quence of the climate change signal being in fact large scale we do not know. Nevertheless, it is shown
that anthropogenic forcing is a plausible explanation for the observed area mean changes of annual tem-
perature in the Baltic catchment. In contrast, anthropogenic forcing only partly explains the annual cycle
of the observed change. Of course, we cannot exclude the possibility that both additional external forc-
ings and internally generated variability may be similarly powerful in explaining the observed changes.
Unfortunately, there are no comprehensive regional simulations on alternative forcing mechanisms avail-
able yet.
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5 DETECTION AND ATTRIBUTION OF AN ANTHROPOGENIC INFLUENCE ON
THE OBSERVED CHANGE IN TEMPERATURE AND PRECIPITATION

5.1 Introduction

In chapters 3 and 4 we have analyzed if the spatial pattern of the change in temperature and precipitation
in the Baltic Sea catchment is consistent with regional climate change projections. In this chapter we
focus on the temporal evolution of area-average temperature and precipitation.

The temperature evolution in northern Europe shows the same main features as global temperature evo-
lution over the 20" century (figure 1.2). Two periods of distinct warming can be identified, the warming
early in the 20" century until the 1930s, and the recent warming since the 1970s. These warming periods
are interrupted by a period of temperature stagnation or even slight cooling around the 1950s. The most
recent warming in the Baltic Sea catchment, however, is roughly twice as fast as the global warming,
with regional amplification of the warming rates being largest in winter and spring (van Oldenborgh
et al., 2009). The similarity of the global and northern European temperature evolution over the 20™
century suggests that the same main causes lead to warming at the global and regional scale. The global
warming is well reproduced by present-day climate models and its causes have been attributed to human
influence (for a review see Hegerl et al., 2007). The regional amplification of the warming, on the other
hand, indicates that the global-scale response is significantly modified at the regional scale.

Changes due to anthropogenic forcing are best expressed in linear trends or some more sophisticated
metric that retains low-frequency variability, since the forcing is varying slowly as well. If we want to be
able to distinguish between changes due to natural and anthropogenic forcings, however, trends are not
a suitable quantity to look at for two reasons: First, the response to natural forcing does not project well
onto a linear trend, as solar forcing is rather a periodic oscillation and volcanic forcing is episodic with
three major eruptions in the second half of the 20" century in 1963 (Mount Agung), 1982 (El Chichén),
and 1991 (Mount Pinatubo). Second, trend patterns due to anthropogenic and natural forcing are highly
correlated at the regional scale, as the spatial pattern and the annual cycle of the warming (or cooling)
induced by either forcing are — as a first approximation — modified and amplified by the same processes
and feedbacks. In contrast to other forcings, volcanic forcing induces cooling in summer and warming in
winter over northern Europe (Shindell et al., 2004, Fischer et al., 2007). The response to volcanic forcing
should thus be clearly distinguishable from the responses to anthropogenic or solar forcing, which rather
lead to consistent warming or cooling in all seasons. The attribution of the observed change to volcanic
forcing is complicated by the strong variability in the response to individual eruptions (Shindell et al.,
2004) and by the limitations of present-day models in reproducing the circulation response to volcanic
forcing and the resulting underestimation of winter warming in the models (Stenchikov et al., 2006).
Nevertheless, it is advantageous to include the annual cycle of the change in the searched-for pattern.
Therefore, we jointly analyze changes in all four seasons.

The global change in precipitation is - in contrast to the observed global warming - less well understood.
Lambert et al. (2004) find that the evolution of global area-average land precipitation from 1940 to 1998
is significantly different from internal variability. The anthropogenic influence on global precipitation
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5 Detection and attribution of an anthropogenic influence

changes has recently been detected in the pattern of trends in annual zonally averaged precipitation by
Zhang et al. (2007). The two studies illustrate that either the temporal or spatial pattern of precipitation
change could be used to detect externally forced changes.

We use data from global AOGCMs in order to formally detect and attribute changes in near-surface
temperature and precipitation. The analyses presented in chapter 2 reveal that dynamical downscaling
has only a minor effect on the representation of the variability and response to anthropogenic forcing
in area-average precipitation in the Baltic Sea catchment. The effect of downscaling on temperature, in
contrast, is a consistent reduction in both variability and response to anthropogenic forcing. In addition,
we note that there are significant systematic model biases in the representation of the mean climate in
this region due to misrepresented small-scale processes such as snow-melt and convective precipitation.
Furthermore, we stress that the variability in area-average precipitation is underestimated in all the mod-
els analyzed. As a first-order correction, we thus inflate the variability in the models to better match the
observations. Nonetheless, we recommend to interpret detection and attribution results for precipitation
with caution.

Precipitation and temperature observations and model simulations used in this chapter are presented in
the following section. In section 5.3, we introduce the optimal fingerprint method used in the detection
and attribution analysis. In section 5.4, we investigate if we can detect externally forced changes - that
is, if the observed change in the Baltic Sea catchment is significantly different from internal variability.
We further analyze the influence of the model used to derive the searched-for signals, the influence of
the length of the time period analyzed, and the influence of the spatiotemporal resolution of the data on
the detection result. In section 5.5, we investigate whether the relative importance of anthropogenic or
natural drivers can be further quantified in a two-signal attribution analysis. The detection and attribution
analyses are then further substantiated with perfect-model experiments in section 5.6. That is, we use
model simulations as pseudo-observations to investigate potential detectability and attribution in the
model world.

5.2 Data

5.2.1 Observed change

The observed change in near-surface temperature over land is estimated from the gridded monthly land
surface temperature data of the Climatic Research Unit (CRU, Brohan et al., 2006, Jones and Moberg,
2003). This data set - referred to as CRUTEM3v - consists of homogenized and quality controlled station
data from 1850 to present. The station data has been interpolated to a 5° by 5° latitude-longitude grid
by averaging temperature anomalies of all the respective stations within one grid cell. Additionally, the
variance of the grid-box time series has been adjusted in order to take into account changes in the number
of stations that contribute to a grid box average (Jones et al., 2001a).

For precipitation, we use version 4 of the “Full Data Reanalysis Product” of the Global Precipitation
Climatology Centre (GPCC, Schneider et al., 2008). These data include quality controlled rain gauge
data from 1901 to 2007 that have been interpolated to a 0.5° by 0.5° grid using the SPHEREMAP method
(Shepard, 1968, Willmott et al., 1985). We use the GPCC’s aggregated 2.5° by 2.5° gridded precipitation
data in this study. We further aggregate the precipitation data to the 5° by 5° latitude-longitude grid of
the CRUTEM3v data. The precipitation data are referred to as GPCC v4.
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5.2 Data

The number of rain-gauges included in the GPCC v4 gridded product varies considerably both in space
and in time (figure 5.1). The average number of stations per 5°x5° grid box in the Baltic Sea catchment
is considerably higher in the densely populated southern part of the Baltic Sea catchment (dashed line
in figure 5.1) than in the rural northern part (dotted line). The number of rain-gauge measurements
included in the GPCC database increases slowly during the first half of the 20" century with a remarkable
drop in 1945 in the southern part of the Baltic catchment. Data coverage is considerably higher after
1950 especially in the southern part with best coverage from 1985 to 2000 and a rapid decrease of the
number of rain-gauges included in the data set thereafter due to the delayed availability of non real-time
measurements.
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Figure 5.1: Number of rain-gauge stations contributing on average to every 5°x5° grid box in the entire
Baltic catchment (solid black line), the Baltic catchment south of 60° N (dashed line) and north of 60° N
(dotted line).

Additional observation and reanalysis data sets have been used in the detection and attribution analysis
in order to confirm the results. As the results do not depend on the data used to estimate the observed
change (except for the reanalyzed precipitation), we limit the discussion to the above mentioned two data
sets for precipitation and temperature.

5.2.2 Climate change signals

The climate change signals are derived from model simulations with global atmosphere-ocean general
circulation models (AOGCMs) from the WCRP CMIP3 database (Meehl et al., 2007b). We refer to the
estimated response to external forcing derived from GCM data as guess patterns in order to express the
uncertainty in the hypothesized response. In order to minimize the influence of internal variability on the
guess patterns, we average across a large number of simulations and models.
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Figure 5.2: Time series of observed 5-yearly averages of winter (DJF) and summer (JJA) area-average
temperature anomalies (left column, according to CRUTEM3yv in red) and relative precipitation anoma-
lies (right column, according to GPCC v4 in green) along with the climate change signals as derived
from the simulations in the CMIP3 multi-model ensemble with anthropogenic forcing only (dashed black
lines) and anthropogenic and natural forcing (solid black lines).
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5.2 Data

We divide the multi-model ensemble in two parts: one containing models with temporally varying an-
thropogenic forcing only, the other containing models with temporally varying anthropogenic and natural
forcings over the 20" century (see table 5.1). In order to be able to derive guess patterns for the period
from 1901 to 2007, for which both temperature and precipitation observations are available, we combine
the 20" century runs that end in 2000 with the projections for the 21°t century driven by anthropogenic
forcings according to the SRES A1B emission scenario. This is a valid approach for three reasons: First,
the scenario simulations have been continued from the 20" century simulations; combining them does
therefore not introduce inhomogeneities. Second, the different emissions scenarios differ only marginally
in the first few years of the 21 century (Nakicenovié et al., 2000). Third, the response of the climate
system to slowly evolving forcings is delayed due to the thermal inertia of the oceans (Hansen et al.,
1985, Wigley and Schlesinger, 1985), thus differences between the projected and observed emissions
have little impact on the climate system in the first few years. For the model simulations including natu-
ral forcings, this extension introduces a small bias, as the natural forcing is kept constant throughout the
21% century.

ALL ANT
GFDL CM2.0 1 BCCR BCM2.0 1
GFDL CM2.1 1 CCCMA CGCM3.1 5
GISS MODEL-E-H 3 CCCMA CGCM3.1T63 1
GISS MODEL-E-R 5(0) | CNRM CM3 1
INMCM3.0 1 CSIRO MK3.0 1
MIROC3.2 HIRES 1 CSIRO MK3.5 1
MIROC3.2 MEDRES 3 GISS AOM 2
MIUB ECHO-G 3 INGV ECHAM4 1
MRI CGCM2.3-2A 5 IPSL CM4 1
NCAR CCSM3.0 7 MPI ECHAMS 4
NCAR PCM1 4 UKMO HADCM3 1
UKMO HADGEM1 1
TOTAL 34 (29) 20

Table 5.1: Number of ensemble members of the individual models used in the detection and attribution
analysis for temperature and precipitation (in brackets).

An overview of the number of ensemble members of the models used is given in table 5.1. For each
model, these ensemble members differ only in the initial conditions and thus represent different real-
izations of internal variability. The individual models, however, differ in many respects including the
number of external forcing mechanisms, the parameterization of sub-grid scale processes, and the num-
ber of processes, interactions, and components of the climate system explicitly modelled to name just a
few. Thus, the CMIP3 multi-model ensemble is a very heterogeneous ensemble.

Two simple strategies how to compute a multi-model ensemble average from a heterogeneous ensemble
can be thought of. First, each individual simulation is given equal weight, and thus the multi-model
mean response is dominated by model responses of models with many simulations. Second, each model
in the multi-model mean is given equal weight. Thus, the individual simulations of models with many
ensemble simulations are given less weight. In the second case, the signal-to-noise ratio of the change in
the multi-model mean is lower due to the down-weighting of individual simulations. Giving each model
equal weight would be the method of choice if we were to believe that the models are independent and
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their response is centered around the true response. However, the models share common bias structures
(Jun et al., 2008) and are thus not independent and there is intensive ongoing debate on how to deal
with dependencies of model biases in the CMIP3 ensemble and multi-model ensembles in general (for
a review on methods currently used see Tebaldi and Knutti, 2007). The results presented in this study
are based on guess patterns derived from multi-model averages giving each simulation equal weight.
Qualitatively, the conclusions are unaffected by this choice in most cases. However, due to the smaller
estimation uncertainty of the hypothesized response, confidence intervals are narrower and the results
are more robust to changes in the details of the analysis.

In addition to the guess patterns derived from the CMIP3 ensemble, we also use guess patterns of the
anthropogenic and natural response derived from individual models in the analysis. These models are
the HadCM3 (Gordon et al., 2000) and PCM1.1 (Washington et al., 2000) models also included in the
CMIP3 ensemble and the MIROC3.2 medium resolution model with high climate sensitivity (Hasumi
and Emori, 2004, Yokohata et al., 2005, Ogura et al., 2008), which is a modification of the MIROC3.2
model with different cloud and precipitation parameterization. Of each of these models we use the
ensemble mean of the four simulations of the climate of the 20" century driven with anthropogenic and
the ensemble mean of the four simulations driven with natural forcings only as guess patterns.

Previous to the analysis, the model data and observations are interpolated to a common latitude-longitude
grid with a resolution of 5° using conservative remapping (Jones, 1999). We use precipitation and tem-
perature data over land only, since sea surface temperatures in the models are likely flawed due to the
unrealistic representation of the Baltic Sea in the GCMs and since precipitation observations over water
are not available for the period under investigation. Model grid boxes with a fractional land area of at
least 50 percent are considered as land. We mask grid cells in the monthly data according to the missing
value mask in the observed record. Annual averages are then computed for years with at least 10 months
of data, seasonal averages are computed only for seasons with no missing data in the monthly records.

5.3 Optimal fingerprinting

When trying to answer the question whether an anthropogenic effect on climate has been observed, one
often refers to detection and attribution studies (see section 1.2). A wealth of statistical methods has
been used in the detection and attribution context, including correlation-based methods (Santer et al.,
1993), optimal fingerprints or multivariate regression (Hasselmann, 1979, 1997, Allen and Tett, 1999),
and Bayesian methods (Hasselmann, 1998, Schnur and Hasselmann, 2005). We use a variant of optimal
fingerprinting to analyze the detectability of an anthropogenic signal in this study.

5.3.1 Fingerprinting as linear regression

The underlying assumption in detection and attribution studies is that the climate i can be linearly de-
composed into deterministic responses to external forcings i; (the signal) and internal climate variability
v (see equation 5.1). That is, climate change detection and attribution is a signal in noise problem.

lp:Zzpiw (5.1)
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5.3 Optimal fingerprinting

Furthermore, we assume, that the signal patterns are known, but their scaling is unknown. Thus, we
account for uncertainty in the magnitude of the forcing and uncertainty in the magnitude of the response
to the forcing - the climate sensitivity. Given these assumptions, we can reformulate the detection and
attribution problem as a linear regression problem (see equation 5.2) with the observed change y being a
linear combination of the scaled signals x; (with scaling a;) plus random noise from internal variability
u. We use ordinary least squares (OLS) to estimate the parameters a;.

Y= ai+u (5.2)
i

In this framework, we express the detection and attribution problem as follows: We detect an externally
forced change, if any of the scaling factors a; is significantly different from zero, that is, if we are
not able to explain the observed change y with internal variability u alone. We attribute the change to
the respective forcings, if the scaling factors are significantly different from zero but not significantly
different from one.

In contrast to classical regression analysis, the significance of the scaling factors is not computed based
only on the distribution of the residuals. Instead, the distribution of the scaling factors a; under the null-
hypothesis a; = 0 is assessed from fits of the regression model to independent segments of long control
simulations (i.e. climate model simulations with external forcings kept constant). The longer record
thus used for significance testing ensures that changes due to low-frequency components of the internal
variability are not erroneously identified as response to forcing.

5.3.2 Accounting for noise-contamination in the signal estimates

The signals x; are a priori unknown and have to be estimated from climate model simulations. Therefore,
these estimated signals are contaminated by internal variability as well, especially if small ensembles
of model simulations are used to estimate the transient response to a given forcing. Following Allen
and Stott (2003) and Stott (2003), we thus extend the regression model by an additional error term
u; that accounts for internal variability in the estimated signals (equation 5.3). This is the total least
squares (TLS) solution to linear regression. We further assume that both the internal variability u and
the noise contamination in the signals u; have the same covariance structure, the magnitude of the noise
contamination in the signals compared to the noise in the observations, however, is reduced by the square
root of the number of ensemble members used to estimate the signal. By factoring estimation uncertainty
of the climate change signals into the analysis, we avoid a systematic negative bias of the scaling factors.
It is important to notice, however, that model biases and the corresponding uncertainty in the response
patterns are not explicitly included in the analysis.

y= ) aixi—up) +u (5.3)

Furthermore, we stress that for climate change detection - the statement that the observed change is
significantly different from internal variability - estimation uncertainty in the guess pattern is of second
importance. Although the power of detection assessment may be reduced by including additional uncer-
tainties, TLS is unlikely to lead to erroneous positive detection of an externally forced change. If we want
to quantify the similarity of the simulated and observed change, avoiding the negative bias of the OLS
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solution is important. Using OLS, we would on average conclude that the model simulated changes are
weaker than the observed changes even though they are in fact similar. Adding estimation uncertainty of
the guess patterns in the analysis removes this negative bias, and from the scaling factors derived using
TLS we would also conclude that the model simulated and the observed change are - on average - similar
if the underlying responses are in fact similar.

A full description of the estimation procedure for TLS regression is presented in (Allen and Stott, 2003)
and we do not attempt to discuss the estimation in detail here. Nevertheless, important properties of
scaling factors estimated using TLS have to be pointed out, as these differ markedly from the respective
properties when using OLS. First, the TLS solution minimizes the squared distances perpendicular to the
best fit line. Thus, if there is little correlation between the observed change and the signal, no particular
direction for the line relating simulated and observed changes will be preferred, and consequently, the
scaling on the signal will not necessarily be close to zero as with OLS. Second, if the noise-contamination
in the signal u; is strong and thus the unknown noise-free response could approach zero, the scaling a;
could be very high or even infinite. Thus, strong noise-contamination of the estimated signals leads to
wide confidence intervals that may even be open-ended, i.e. include infinite scaling (see figure 5.11).

5.3.3 Signal-to-noise optimization

The a; are unbiased and hence optimal estimators only if the noise components in u are independent
and identically distributed (iid). Therefore, the regression model is not fitted using the original observa-
tion and model data but using a transformed version thereof. A suitable transformation resulting in iid
residuals is given by using (a truncated set of) the empirical orthogonal functions (EOFs) of the control
simulation weighted by the square root of their eigenvalues, since the control represents our estimate of
internal variability. This transformation corresponds to the signal-to-noise optimization in the optimal
fingerprint method as described in (Hasselmann, 1993).

When using spatial information in the detection and attribution analysis, it is obvious that we would
want to rely on the first few EOFs only, as we expect the models to reliably represent large-scale features
but not the small-scale details. Allen and Tett (1999) propose a consistency test that can be used to
determine the truncation in the phase space for which model simulated variability is consistent with
internal variability derived from the observations. The null-hypothesis is: the control simulation of
climate variability is an adequate representation of the variability in the real world in the respective
truncated phase-space. As we require the transformation to result in iid residuals, we can then test wether
the residuals behave like mutually independent random noise (for an in-depth discussion please refer to
Allen and Tett, 1999). If we reject the null-hypothesis, the transformation that is based on simulated
variability does not result in iid residuals. Testing with an increasing number of EOFs retained in the
analysis can then provide an upper bound on the number of EOFs of the simulated variability that are
consistent with the observed record. We note, however, that the power of this test is generally low.

When using temporal patterns in the detection analysis, however, there is no obvious reason why we
should truncate the EOFs at all, as the models are not a priori expected to underestimate high-frequency
variability (corresponding to EOFs with small eigenvalues) - at least not on time-scales relevant for the
detection problem. Thus, we do not truncate the series of EOFs when using area-average quantities,
however, we allow for a maximum of twenty EOFs in the case of space-time patterns and choose the
final truncation according to the above mentioned consistency test.
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Using a truncated set of scaled EOFs of the control for the transformation, however, can lead to erroneous
attribution results if the signal does not project well on the truncated set of EOFs used. For the detection,
any variable transformation resulting in iid residuals could be applied, for attribution, in contrast, the
transformation should not influence the relative importance of the different signals. Therefore, we use
EOFs derived from the all-forcings runs (i.e. the simulations from the CMIP3 database described in
section 5.2.2) for the detection and attribution analysis, in order to assure that all of the searched-for
signals project well on the first few EOFs.

The problem of large (small) eigenvalues being positively (negatively) biased when estimated from a
small sample (see von Storch and Hannoschock, 1985 for further discussion) is taken care of by using an
independent segment of the control for significance testing. The estimate of internal variability used for
signal-to-noise optimization is derived from the intra-ensemble spread of model simulations from models
with more than two ensemble members. The estimate of internal variability used to compute confidence
intervals is derived from overlapping segments of the pre-industrial control runs of all CMIP3 models.
Segments starting every ten years are used. For the computation of the confidence intervals we assume the
corresponding degree of freedom of non-overlapping segments, which represents a conservative estimate
of the spread of scaling factors under the null hypothesis. We inflate the control run variability for models
with significantly lower variance in the forced simulations compared to the observed variance (variance
ratio test at the 5% level, figure 2.4).

5.4 Single-signal detection

We focus on changes in the second half of the 20" century in the detection and attribution analysis in
order to minimize the effects of sparse and temporally changing observational coverage (e.g. figure 5.1).
The observed trend from 1953 to 2007 in area-average temperatures in the Baltic Sea catchment is well
reproduced by both the anthropogenic and the all-forcings guess pattern as derived from the CMIP3
ensemble (see figure 5.2). In addition, the anthropogenic and all-forcings guess patterns differ only
marginally, thus indicating that anthropogenic forcing is the dominant forcing for temperature during the
last 50 years. The observed trend in precipitation in winter, in contrast, is stronger than predicted by the
models. Furthermore, the difference between the anthropogenic and all-forcings guess patterns (dashed
and solid black lines in the right-hand panels of figure 5.2) in precipitation are of comparable magnitude
to the hypothesized response to anthropogenic forcing and thus it is less clear whether anthropogenic or
natural forcing is the dominant forcing. The variability in 5-year averages of temperature in winter and
precipitation summer and winter is strong compared to the hypothesized responses to anthropogenic or
anthropogenic and natural forcings. This illustrates, that the signal-to-noise ratio of externally forced
changes compared to internal variability is low.

We assess whether the observed change can be explained by natural internal variability alone. There-
fore, we fit the observations to the all-forcings (ALL) and anthropogenic (ANT) signals as derived from
the CMIP3 ensemble individually. Additionally, the observations are also regressed on the response to
natural forcings only, which is the difference between the all-forcings and anthropogenic guess patterns.
The thus constructed guess pattern is more strongly contaminated by internal variability than either of
the initial guess patterns. Its noise contamination corresponds to the noise-contamination of an ensemble
with 12.6 members.
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5 Detection and attribution of an anthropogenic influence

5.4.1 Detection with time series of area-average anomalies

We investigate the detectability of an externally forced signal using time series of seasonal anomalies of
area-average temperature and precipitation from 1953 to 2007. To further suppress variability, we use
time series of non-overlapping 5-yearly averages of the seasonal anomalies (see figure 5.2). Thus, the
vector of the observed change used in the detection analysis includes the anomalies of average winter
(DJF) temperatures from 1953 to 1957 as its first entry, anomalies of average spring (MAM) temperatures
from 1953 to 1957 as its second entry, and so forth with the last element being the anomalies of average
autumn (SON) temperatures from 2003 to 2007.

We find a detectable external signal in seasonal temperature anomalies from 1953 to 2007(figure 5.3).
Both the anthropogenic and the all-forcings guess patterns are detected with 10% risk of error. The
best-fit scalings for the anthropogenic and all-forcings guess patterns are very similar and close to one,
indicating that either of the proposed responses is a plausible explanation for the observed change. From
the small difference in scaling on the anthropogenic and all-forcings response follows, that the response
to natural forcings is rather weak and unimportant in explaining the observed change. This is further
confirmed by using the natural guess pattern in the single-signal detection analysis (rightmost column in
figure 5.3). We have to amplify the natural signal as derived from the CMIP3 ensemble considerably to
best fit the observations.

When we neglect noise contamination of the guess patterns (the ordinary-least-squares solution to the
regression problem, see section 5.3), the best-fit scalings on the natural guess pattern is close to zero. In
contrast, the best-fit scalings on both the all-forcings and the anthropogenic guess patterns are close to
one but only the anthropogenic guess pattern is detected (not shown). Thus, we conclude that natural
forcing alone is no plausible explanation of the observed change, whereas anthropogenic forcing alone
is a plausible explanation of the observed temperature change from 1953 to 2007.

The influence of the time period analyzed is investigated using windows of decreasing length from 1903,
1953, 1963, and 1973 to 2007. We detect an anthropogenic signal in the observed temperature changes
for all time periods, the all-forcings signal, however, can only be detected during the last 55 to 45 years.
The size of the confidence intervals decreases with increasing length of the time window, thus indicating
that the increase in significance due to increasing sample size outperforms the increasing signal-to-noise
ratio due to the accelerated warming towards the end of the 20" century. The all-forcings signal explains
the observed warming since the 1950s very well, with best-fit scalings being close to one. The evolution
of temperatures in the first half of the 20" century, however, is not well reproduced in the all-forcings
simulations. Furthermore, we note that the recent warming is stronger than the predicted warming due
to anthropogenic forcing, corroborating the findings of van Oldenborgh et al. (2009).

Successful detection of an external influence depends both on the estimate of the internal variability and
on the signal that is searched for. However, only the estimate of variability is critical, as looking for
a signal that is far away from the true response simply reduces our detection skill. In contrast, errors
in the estimate of variability will lead to false detection results. If we underestimate variability, we
will be overconfident about a potentially detectable signal and vice versa. Thus, we double the control
variability used to estimate the confidence intervals about the best-fit scaling (e.g. thin lines in figures 5.3
and 5.4). With the control variability doubled, only the anthropogenic signal in area-average temperature
anomalies can be detected with a probability of error of 10%.

The detectable anthropogenic signal is slowly varying (see figure 5.2), and thus a misrepresentation of
the low-frequency variability in the control runs used can lead to false detection results. We compare
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Figure 5.3: Scaling factors and corresponding confidence intervals of a single-signal detection analysis
with time series of 5-yearly averages of seasonal area-average temperature anomalies from 1953 to
2007 according to the CRUTEM3v data. The guess patterns are derived from simulations of the CMIP3
ensemble with all forcings (left), anthropogenic forcings (middle), and the difference between all and
anthropogenic forcing guess patterns (right). The diamonds indicate the best-fit scaling on the guess
patterns, thick vertical lines denote the 90% confidence interval about the best-fit scaling, the thin vertical
lines denote the 90% confidence interval when control variability is doubled.

the power spectra of observed and simulated seasonal area-average temperature in the Baltic Sea region.
We find no clear evidence of a consistent underestimation of the low-frequency variability in the model
simulations (see figure 5.5). However, the spread across the models used is wide and we cannot directly
assess internal variability as we cannot extract the internal variability from the observations. Instead, we
compare the forced simulations with the observations.

In addition to the analysis of the low-frequency variability, we check if the variability of the residuals
from the fit is consistent with internal variability in the models as proposed by Allen and Tett (1999). We
test whether the residuals from the fit behaves like mutually independent, normally-distributed random
noise in the coordinate system defined by the weighted EOFs of model simulated variability. It can
be shown that for the TLS approach, the sum of squares of the residuals 7> is expected to follow an
F-distribution (Allen and Stott, 2003), with:

12 ~ (k= m)F (t—myn (5.4)

where k is the number of EOFs retained in the analysis, m the number of signals, and n the number of
statistically independent segments from the control simulation used. Instead of the F' distribution, we
test against the y? distribution, which is the appropriate test for the residuals from an OLS regression
(Allen and Tett, 1999), and which provides a conservative estimate of model consistency in the presence
of noise-contamination of the guess patterns. In figure 5.6, the evolution in dependence of the truncation
of (k —m)/r?, which corresponds to the cumulative variance ratio of simulated vs. observed variance,
is shown along with the respective 10% and 90% confidence levels. According to the consistency test,
the model simulated variability is consistent with the residual variability for all truncations. The models
slightly overestimate low-frequency variability (corresponding to the first few EOFs). This is consistent
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Figure 5.4: Scaling factors and corresponding confidence intervals of a single-signal detection analysis
with time series of 5-yearly averages of seasonal area-average temperature for different time periods.
From left to right the time periods used in the analysis are the 105 years from 1903 to 2007, 55 years
from 1953 to 2007, 45 years from 1963 to 2007, and the 35 years from 1973 to 2007. The guess patterns
used in the single-signal analysis stem from the CMIP3 all-forcings (black) and anthropogenic (red)
simulations. The natural forcing only guess pattern (blue) is the difference between the all-forcings and
anthropogenic guess patterns.

with the slightly lower spectral density found in the comparison of the power spectra for multi-decadal
variability (figure 5.5).

We further analyze wether the detection analysis is robust to changes in the number of EOFs retained in
the analysis. In general, we find that in cases in which the signal-to-noise ratio allows us to successfully
detect an external influence, the results are not sensitive to the truncation used (right panel in figure 5.6).
On the other hand, if the signal-to-noise ratio is low, the best-fit scaling gets - as expected - heavily
dependent on the details of the analysis (not shown).

The results presented so far rely on the guess patterns from the CMIP3 multi-model ensemble. If we use
HadCM3, PCM1.1, and MIROC3.2 single-forcing runs to estimate the signals, we have to restrict the
analysis to the years before 2000, since most of the simulations have not been carried on into the 21st
century. In correspondence with the length of the period chosen in the analysis of the most recent data,
we analyze the 55 years of 5-yearly averages from 1943 to 1997. For all three models, the all-forcings
guess pattern is the sum of the anthropogenic and natural forcings only simulations. Furthermore, we also
use the average of the three models providing single-forcing simulations for detection (apricot scaling
and uncertainty in figure 5.7).

We find a detectable external signal using most of the guess patterns from the individual models (figure
5.7). The all-forcings guess patterns from HadCM3 and MIROC3.2 explain the observed change well,
with best-fit scalings on these signals being close to unit scaling, whereas the all-forcings signals derived
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Figure 5.5: Smoothed periodogram of seasonal area-average temperature anomalies for the period from
1901 to 2007. The red line denotes the observed spectrum according to the CRUTEM3v data, the median
of all forced CMIP3 simulations is plotted in black along with the interquartile range in dark gray and
the range from the 5" to the 95" percentile in light gray. The periodogram is smoothed with a modified
Daniell smoother of length 9.

from PCM1.1 and the multi-model mean provide poor explanations. The confidence intervals about
the best-fit scalings on the all-forcings signal from HadCM3 and MIROC3.2 are even narrower than
the confidence interval on the multi-model mean signal, illustrating the improvement in detection skill
when the searched for signal is close to the true response. Although the 10 most recent years used in
the detection analysis with the multi-model mean (see figure 5.3) help to increase the signal-to-noise
ratio, using a better estimate of the signal - as with HadCM3 and MIROC3.2 guess patterns - is similarly
helpful.

Best-fit scalings on the anthropogenic guess patterns agree well across models and are close to unit
scaling. The 90% confidence intervals about the best-fit scalings on the anthropogenic guess patterns
include unit scaling for all models analyzed, whereas they do not include unit scaling for the natural guess
patterns. Thus, we conclude that anthropogenic forcing alone is a plausible explanation for the observed
change from 1943 to 1997, whereas natural forcing alone is no plausible explanation independent of the
model(s) used to derive the signal patterns.

The scalings on the anthropogenic guess patterns do not reflect the fact that equilibrium climate sensitiv-
ity - being the globally averaged warming resulting from an increase in atmospheric GHG concentrations
- differs considerably across the models analyzed. The equilibrium sensitivity in the CMIP3 ensemble
ranges from 2.1 to 4.4° C for a doubling of atmospheric CO, concentrations (see table 8.2 in Randall
et al., 2007). The PCM1.1 model marks the lower end of the simulated sensitivities with 2.1° C, the
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Figure 5.6: Ratio of simulated and observed residual variance (left, see text) and scaling factors and con-
fidence intervals (right) in dependence of the truncation for single-signal detection using time series of
S-yearly averages of seasonal area-average temperature from the CRUTEM3v data and the multi-model
all-forcings guess pattern from 1953 to 2007. The dashed line denotes the 10% and 90% confidence lev-
els within which simulated residual variance is consistent with the observed residual variance according
to a x* test. The grey bar indicates the truncation used.

HadCM3 model lies in the middle of the CMIP3 range with equilibrium sensitivity of 3.3° C, and the
high-sensitivity version of the MIROC3.2 has an equilibrium sensitivity of 6.2° which is far beyond the
sensitivities simulated in the CMIP3 ensemble (Ogura et al., 2008). The reasons why models with dif-
ferent equilibrium climate sensitivities reproduce the observed record similarly well are manyfold and
include compensating ocean heat uptake rates and compensating net aerosol effects (Knutti, 2008).

In contrast to temperature, detection results for seasonal precipitation in the Baltic Sea catchment are less
consistent. Even though we detect external influences in the observed changes from 1943 to 1997 for all
three different guess patterns, we have to amplify the signals considerably to best fit the observations (see
figure 5.8). As for temperature, the best-fit scaling on the anthropogenic and all-forcings guess pattern is
similar, thus indicating that the natural response as derived from the CMIP3 ensemble is unimportant in
explaining the observed change in precipitation.

In contrast to temperature, the observed change in area-average precipitation is considerably stronger
than simulated in GCMs. If we use guess patterns from individual models, we have to amplify the
anthropogenic and all-forcings guess patterns by factors of three to ten (figure 5.9), the natural guess
patterns have to be amplified even more. This misrepresentation of observed precipitation changes in
present-day climate models is a well-known fact (Zhang et al., 2006, and chapter 3) and the limited
skill in simulating changes in sea-level pressure and sea-surface temperature over Europe and the North
Atlantic have been identified as possible causes (G. J. van Oldenborgh, pers. communication). We con-
clude that according to changes in area-average precipitation from 1943 to 1997, neither the combined
anthropogenic and natural forcing, nor anthropogenic or natural forcing alone are plausible explanations
for the observed change (see figure 5.9).
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Figure 5.7: Scaling factors and confidence intervals in dependence of the models used to derive the cli-
mate change signals for single-signal detection with seasonal temperature from 1943 to 1997 according
to the CRUTEM3v data. From left to right the simulations used to derive the guess patterns stem from
the CMIP3 multi-model ensemble (dark red), the HadCM3 (dark blue), the MIROC3.2 (blue), and the
PCM1.1 (light blue) single-forcing runs, and the average of the three models with single-forcing runs
(apricot).

In contrast to temperature, the signal-to-noise ratio of externally forced changes in precipitation com-
pared to internal variability is lowest for the 45 years from 1963 to 2007 and not for the longest time
period investigated (not shown). This indicates that the anthropogenic and natural signals in the first half
of the 20" century is not well-known.

5.4.2 The influence of space-time resolution on the detection result

We analyze the influence of spatiotemporal resolution on the result of the detection analysis presented in
the previous section. Therefore, we repeat the single-signal analysis with different levels of aggregation
of the data. The detection vector in the four cases analyzed contains seasonal area-average trends from
1953 to 2007 in the most aggregated case (a vector of length 4), time series of 5-yearly averages of
seasonal area-average anomalies (as in the previous section), seasonal trends for all of the fifteen 5°x5°
grid boxes contributing to the Baltic Sea catchment (a vector of length 60), and finally 5-yearly averages
of seasonal anomalies for all grid boxes (a vector of length 660).

We detect the anthropogenic and all-forcings guess patterns using either area-average anomalies, area-
average trends, or spatiotemporal anomalies; no externally forced change can be detected using the
spatial pattern of trends. Highest signal-to-noise ratio is achieved with time series of 5-yearly averages
of seasonal area-average temperatures in the Baltic Sea catchment (dark red scalings in figure 5.10). For
different space-time resolutions of the natural guess patterns we get different signs on the best-fit scaling.
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Figure 5.8: As in figure 5.3 but for time series of 5-yearly averages of seasonal precipitation anomalies
according to the GPCC v4 data.

Such an erratic behavior of the best-fit scalings is expected for weak signals and low signal-to-noise ratios
when using the TLS solution to regression (see section 5.3). We further find that the best-fit scalings and
uncertainty ranges for the natural signal are strongly dependent on the truncation used, whereas they are
stable for the anthropogenic and all-forcings signals for truncations larger than two. These first EOFs
describe the low-frequency (in the case of time series) and/or large-scale (in the case of patterns with
spatial information) change in the Baltic Sea catchment.

In contrast to temperature, including the spatial pattern of precipitation changes into the analysis in-
creases the signal-to-noise ratio. When including the spatial pattern of the change in the analysis, the
scaling on the anthropogenic and all-forcings guess patterns are consistent with unit scaling and the best-
fit scalings are much closer to one, whereas natural forcing alone is still no plausible explanation of the
observed change (figure 5.11)

It is important to notice, however, that the varying spatial coverage with rain-gauge stations is expected
to introduce a significant bias when spatial variability is included in the analysis. The effect of changing
coverage on area-average precipitation, on the other hand, is expected to be small.

5.5 Two-signal attribution

In order to distinguish between different forcing mechanisms, we jointly fit the all-forcings and anthro-
pogenic guess patterns (anthropogenic and natural guess patterns for HadCM3, PCM1.1, and MIROC3.2)
to the observations. In contrast to the single-signal analysis with the all-forcings guess pattern, this al-
lows us to take into account scaling and estimation uncertainty in both patterns individually. For the

54



5.5 Two-signal attribution

© AL © ANT | NAT - ®
© — ¢ 4 - ©
< — <
’ -
o~ T T 4 - o
o o
o~ | | o~
| |
T I | -y

Figure 5.9: As in figure 5.7 but for relative seasonal precipitation anomalies according to the GPCC v4
data.

CMIP3-derived guess patterns, the scaling on the anthropogenic and natural signals can then be com-
puted from the two-signal analysis with the all-forcings and anthropogenic guess patterns after the fit.
The scaling on the natural signal corresponds to the scaling on the fitted all-forcings guess pattern, the
scaling on the anthropogenic signal corresponds to the sum of the scalings on the fitted anthropogenic
and all-forcings guess patterns, as both contain the response to anthropogenic forcing. In comparison to
fitting the anthropogenic and natural guess patterns (being the difference between all-forcings and an-
thropogenic guess patterns) directly, fitting the original guess patterns and computing the corresponding
scalings after the fit is advantageous, as the original guess patterns are less noise-contaminated than the
(indirectly derived) natural guess pattern.

We find a detectable external signal when fitting both guess patterns simultaneously; zero scaling on
both signals is not within the 90% confidence ellipsoid around the best-fit scaling (see figure 5.12).
Furthermore, the best-fit scaling on the anthropogenic signal is close to one and negative on the natural
signal as in the single-signal analysis. The confidence ellipsoid extends further in the direction of the
response to natural forcing, thus the signal-to-noise ratio on the natural signal is lower than for the
anthropogenic signal. Even though the observed warming is technically not attributable to anthropogenic
forcing, as zero scaling on the anthropogenic signal is within the confidence ellipsoid about the best-fit
scaling, anthropogenic warming is clearly the more likely explanation for the observed change.

The low signal-to-noise ratio of naturally forced changes is either due to the natural response being
weak compared to internal variability or due to the fact that the response derived from the multi-model
ensemble is far from the true response. In order to shed more light on this issue, we rerun the two-signal
analysis with the individual CMIP3 simulations as pseudo-observations. We find that the best-fit scaling
on the natural signal is positive for most of the simulations including anthropogenic and natural forcing,
but negative for most of the simulations with anthropogenic forcing only (see figure 5.12). However,
the best-fit scalings of the natural guess patterns for the all-forcings simulations (black diamonds in
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Figure 5.10: Single-signal detection analysis with seasonal near-surface temperature from 1953 to 2007
in dependence of the space-time resolution of the patterns used (corresponding to figure 5.3). For each
column from left to right these are: time series of 5-yearly averages of seasonal area-average tempera-
ture (dark red), seasonal trends in area-average temperatures (apricot), time series of 5-yearly averages
of seasonal temperature at the individual grid boxes (dark blue), and seasonal trends at the individual
grid boxes (light blue).

figure 5.12) vary considerably across models. The natural signal can be detected in 14 of the 25 all-
forcings simulations used as pseudo-observations for which an external influence can be detected, which
is remarkable given the wide spread of the best-fit scalings. We conclude that even though the response
to natural forcing of most model simulations is closer to the multi-model response than the response in
the observations, the models do not agree well on the natural response.

The guess patterns used in the two-signal analysis stem from a heterogeneous multi-model ensemble.
We implicitly assume that the difference between the anthropogenic and the all-forcings guess pattern
from the CMIP3 ensemble is the natural signal. Parts of this difference, however, can be attributed to
systematic model biases, as different models are used to estimate the anthropogenic and all-forcings
guess patterns. Thus we compare the results based on the multi-model mean patterns with attribution
results based on guess patterns derived from individual models (see figure 5.13).

Corresponding to the single-signal analysis, the best-fit scaling on the natural response differs consider-
ably across models in the two-signal analysis as well (figure 5.13). In contrast to the single-signal anal-
ysis, however, also the best-fit scalings on the anthropogenic guess patterns differ considerably across
models in the two-signal analysis. Nevertheless, we find a detectable external influence in the period from
1943 to 1997 for all of the models except the PCM1.1 (light blue line in figure 5.13) and the combined
single-forcing ensemble (apricot line in figure 5.13).
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Figure 5.11: As in figure 5.10 but for relative seasonal precipitation anomalies with respect to the 1961-
90 mean derived from GPCC V4.
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Figure 5.12: Two-signal attribution analysis with time series of 5-yearly averages of area-average sea-
sonal temperature in the Baltic Sea catchment from 1953 to 2007 using the CRUTEM3v data. The red
diamond indicates the best-fit scaling on the anthropogenic and natural signals, the red line denotes
the joint 90% confidence interval and the vertical and horizontal lines indicate the one-dimensional
90% confidence intervals about the best-fit scaling. Additionally, the best-fit scalings for the two-signal
analysis using the individual CMIP3 simulations as pseudo-observations are shown.
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Figure 5.13: Two-signal attribution analysis with 5-yearly averages of area-average seasonal temper-
ature in the Baltic Sea catchment from 1943 to 1997 according to the CRUTEM3v data. The signals
used in the analysis are estimated from simulations of the CMIP3 multi-model ensemble (dark red), the
HadCM3 (dark blue), the MIROC3.2 (blue), and the PCM1.1 (light blue) single-forcing runs, and the
average of the three models with single-forcing runs (apricot).

The attribution results are not robust to changes in the time period considered. In general, the most
recent change is dominated by anthropogenic forcing, whereas the attribution results depend strongly on
the models when changes in the early 20th century are also taken into account (not shown).

The two-signal analysis with either area-average or spatiotemporal precipitation anomalies reveals no
clear picture, except that the observed change is very likely not due to internal variability alone. The
best-fit scalings vary considerably depending on the model used to derive the signal patterns, the time
period analyzed, and the spatiotemporal resolution of the pattern (not shown). Thus, we conclude, that
even though it is unlikely that the observed change in precipitation is due to internal variability alone, we
are not able to reproduce nor explain the observed change.

The anthropogenic and natural guess patterns are correlated for the different models analyzed and thus
the major axes of the confidence ellipsoids are tilted; this correlation explains part of the variability in
best-fit scalings across models. Correlation of the signals further results in wide confidence intervals
about the best-fit scaling, as a strong response to natural forcing can be compensated with a strong
response to anthropogenic forcing. Consequently, we cannot yet distinguish individual forcings in the
Baltic Sea catchment.

Various strategies can be chosen to increase the skill in attributing the observed change to potential forc-
ing mechanisms. These strategies include decreasing the noise contamination in the model signals by
increasing the ensemble used to estimate the signals, or increasing the signal-to-noise ratio of externally
forced changes for example by looking at longer records. The second approach leads to smaller confi-
dence intervals when temperature changes from 1903 to 1997 are analyzed (not shown). However, the
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best-fit scalings on the signals vary even more strongly across models when the first half of the 20™
century is included in the analysis.

5.6 Detection and attribution in a surrogate climate

We identify four main sources of uncertainty that are not explicitly included in the detection analysis
presented above. These are:

- Systematic model biases of the GCMs used to derive the hypothesized responses to different forc-
ings and to estimate the internal variability (see chapter 2).

- Additional forcing mechanisms not accounted for in the GCM simulations such as land-use
change.

- Scale mismatch between observed quantities measured at discrete locations and simulated quanti-
ties representing spatial averages.

- Sources of variability in the observations not included in the models such as inhomogeneities due
to station relocations or due to changing spatial coverage.

We repeat the detection and attribution analysis using model simulations as pseudo-observations in or-
der to analyze the potential detectability and attribution in cases unaffected by above uncertainties. The
remaining sources of uncertainties are explicitly dealt with in the detection analysis. These are the un-
certainties related to the estimation of both the hypothesized signals and internal variability from finite
samples. The first of which is dealt with by including noise-contamination of the guess patterns into the
analysis, which results in the total-least-squares formulation of the detection problem (see section 5.3).
Estimation uncertainty of the internal variability is taken into account by using independent segments
of the control simulations for the signal-to-noise optimization and the hypothesis testing. Successful
detection and attribution of a regional climate change in the model world thus depends exclusively on
the signal-to-noise ratio of the externally forced changes compared to internal variability and the experi-
mental setup.

5.6.1 Detection and attribution with a perfect model

We repeat the detection and attribution analysis with time series of 5-yearly averages of seasonal,
area-average temperature and precipitation from 1943 to 1997 using model simulations as pseudo-
observations. For each of the three models providing simulations driven by natural and anthropogenic
forcing only, we carry out the detection and attribution analysis with the respective all-forcings simu-
lations as pseudo-observations. The all-forcings guess pattern in the single-signal analysis is then the
sum of the natural and anthropogenic guess patterns in order to use simulations independent from the
pseudo-observations for the construction of the guess patterns.

It is important to notice that even though the model used to derive the hypothesized signals of natural
and anthropogenic change is perfect in that its systematic model bias is zero and all of the forcings
and processes influencing the pseudo-observations are known, the response to natural and anthropogenic
forcing is still uncertain, as we have to estimate it from a small set of simulations. The uncertainty of the
guess patterns contributes to the uncertainty on the best-fit scalings (due to the unknown contribution of
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internal variability) and thus broadens the confidence intervals which in turn limits our skill in detecting
and attributing externally forced changes.

Given a perfect model, we detect an external influence on time series of seasonal area-average temper-
ature from 1943 to 1997 in the Baltic Sea catchment in 15 of the 36 cases analyzed (figure 5.14). The
best-fit scalings vary considerably between the different simulations used, indicating, that the signal-to-
noise ratio of the externally forced changes compared to internal variability is low. Using the all-forcings
guess pattern to detect changes in the all-forcings simulations is beneficial according to the HadCM3 and
MIROCS3.2 results. This is somewhat surprising, as the all-forcings guess patterns used in the analysis
are more strongly contaminated by internal variability than the anthropogenic and natural guess patterns
due to the way they are constructed. Nevertheless, this nicely illustrates how looking for a pattern close
to the true response increases our skill of detecting an externally forced change.

As in the single-signal analysis, the best fit scaling factors vary considerably across simulations in the
two-signal analysis. This variability can again be explained in parts with the correlation of the two
patterns. The natural and anthropogenic guess patterns as derived from the HadCM3 and MIROC3.2
(PCM1.1) models are correlated (anti-correlated). Consequently, the major axis of the respective confi-
dence ellipsoids is tilted by approximately 45° with respect to the horizontal line (see figures 5.13 and
5.14). That is, a positive scaling on the natural response can be compensated by negative scaling on the
anthropogenic response and vice versa. Thus, the influence of individual forcing mechanisms can not be
separated.

The two-signal analysis further reveals that neither of the forcings clearly dominates in the period from
1943 to 1997. Nevertheless, an external influence is detected in 7 out of 12 cases and the scaling on
both the anthropogenic and natural guess patterns is consistent with unit scaling in 3 of the 7 cases for
which an external influence is successfully detected in the two-signal analysis. Furthermore, we are able
to separately detect both guess patterns individually in the two-signal analysis for one simulation with
the PCM1.1 model (red diamond and line in the middle panel of figure 5.14) and thus we can formally
attribute the simulated change to combined anthropogenic and natural forcing.

Perfect-model detection and attribution with time series of 5-yearly averages of area-average precipita-
tion anomalies is carried out with the PCM1.1 and MIROC3.2 model data only, as HadCM3 all-forcings
simulations were not readily available at the time. For both models, scaling factors on all of the three
searched-for signals in the single-signal analysis vary considerably across the four different all-forcings
simulations used as pseudo-observations (not shown). Consequently, we conclude that the signal-to-
noise ratio of the externally forced response to either forcing compared to internal variability is low.
Nevertheless, an external signal is detected in the single-signal analysis in 5 out of 12 cases using PCM1.1
and in 4 out of 12 cases using MIROC3.2 data. In 4 out of 8 cases, the anthropogenic guess pattern can be
separately detected and is consistent with unit scaling in the two-signal analysis. In contrast, the natural
guess pattern cannot be separately detected in the two-signal analysis.

We conclude that we would not expect to be able to detect an external influence in area-average temper-
ature and precipitation from 1943 to 1997 even if we had a perfect model. Even with the all-forcings
guess pattern, best-fit scalings are not always consistent with unit scaling. The low signal-to-noise ratio
of externally forced changes in precipitation and the thereby resulting strong noise-contamination of the
guess patterns derived from small ensembles inhibits successful attribution in the period from 1943 to
1997 even if we had a perfect model.
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ANT
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Figure 5.14: Two-signal (left) and single-signal (right) analysis using time series of 5-yearly averages
of seasonal area-average temperature from 1943 to 1997 from the HadCM3, PCM1.1 and MIROC3.2
all-forcings simulations as pseudo-observations. The searched-for signals have been derived from the
anthropogenic and natural forcing simulations of the respective models. The all-forcings guess pattern
in the single-signal analysis is the sum of the natural and anthropogenic guess pattern. Diamonds denote
best-fit scalings, the ellipsoids and the vertical lines indicate the 90% confidence intervals about the best
fit scaling. The colors denote the four different simulations of each model used as pseudo-observations.
These simulations differ in initial conditions only.
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5.6.2 Time of emergence

Above perfect-model study illustrates, that external changes in seasonal temperatures during the 20th
century cannot be reliably detected with climate signals derived from small ensembles even if we had a
perfect model. The question thus arises, whether either the increasing anthropogenic signal in the near
future or the use of imperfect but less noise-contaminated guess patterns significantly increase our skill
in detecting externally forced changes.

We perform a single-signal analysis with guess patterns derived from all the CMIP3 models providing
at least 3 ensemble simulations for the 20th and 21st century. Thus we have a total of 11 (10 for pre-
cipitation) signal patterns at hand, 9 (8) from individual models (see table 5.1) plus the all-forcings and
anthropogenic forcing multi-model patterns as described in section 5.2.2. Depending on the model, the
guess patterns include either anthropogenic (GHG and sulfate) forcing only or anthropogenic and natural
(solar and volcanic) forcing. Furthermore, we use the 54 (49 for precipitation) individual simulations as
pseudo-observations. For all combinations of guess patterns and pseudo-observations, we analyze the
detectability of the signal in the simulations for different time periods, the shortest including 20 years
from 1953 to 1972, the longest ranging from 1953 to 2097 (upper panel in figures 5.15 and 5.16). Due
to the increasing length of the time window used for the detection analysis alone, we expect an increase
of the signal-to-noise ratio. Additionally, a decreasing number of independent segments from the control
runs is available for time windows of increasing length. This artificially increases the estimated signal-
to-noise ratio of external changes for the longest periods analyzed. In order to partly avoid this effect, we
reduce the number of control run segments used for the analysis of short time windows. In addition, we
also analyze detection using moving windows of fixed length of 55 years, the first ranging from 1903 to
1952, the second from 1908 to 1957, and so forth with the last ranging from 2043 to 2097 (bottom row
in figures 5.15 and 5.16).

Above experimental setup allows us to investigate the effect of the detection strategy and the signal
patterns on potential detectability. We define potential detectability as the fraction of simulations for
which an anthropogenic signal can be detected at the 90% level. Correspondingly, potential attribution
is the fraction of simulations consistent with unit scaling of the respective signal. We further distinguish
three cases:

- The perfect-model case: both the simulations used as pseudo-observations and the simulations
used to derive the guess patterns stem from the same model. The guess pattern is constructed from
all the available simulations except the one used as pseudo-observations. Thus, the guess patterns
are estimated from 2 to 6 simulations depending on the model.

- The imperfect-model case: the simulation used as pseudo-observations stems from a different
model than the simulations used to estimate the guess pattern. Depending on the model, the guess
pattern is estimated from 3 to 7 simulations.

- The multi-model mean case: the guess pattern is the multi-model mean as described in section
5.2.2.

The guess patterns in the perfect-model case are thus more strongly contaminated by internal variability
than the guess patterns in the imperfect-model case. On the other hand, the perfect-model patterns are
generally closer to the true response than the imperfect-model patterns.

Anthropogenic changes in both temperature and precipitation clearly emerge from noise during the 21%
century (see figures 5.15 and 5.16). Potential detectability increases in all cases with increasing length
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Figure 5.15: Emergence of a detectable external signal in 5-yearly averages of area-average seasonal
temperature from 1953 to the year indicated (top panel) and for windows with fixed length of 55 years
(bottom panel). All the simulations from the CMIP3 ensemble are used as pseudo-observations. Signal
patterns are derived from models with at least three ensemble members (see text). In the perfect-model
analysis, the signal patterns and pseudo-observations stem from the same model (light grey), whereas in
the imperfect-model case, signals and observations stem from different models (dark grey). The detection
results with the multi-model mean signals are displayed in red. The solid lines denote the fraction of
simulations showing detection at the 90% level, the dashed lines indicate the fraction of simulations
additionally consistent with unit scaling (attribution). The vertical line indicates the year 2007.
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Figure 5.16: As in figure 5.15 but for 5-yearly averages of area-average seasonal precipitation from 1953
to the year indicated (top panel) and for windows with fixed length of 55 years (bottom panel).
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of the time period analyzed (upper panels in figures 5.15 and 5.16). Potential detectability also increases
with the increasing forcing towards the end of the 21% century (lower panels in figures 5.15 and 5.16).
The signal-to-noise ratio of externally forced changes is lower for precipitation than for temperature and
thus potential detectability is generally lower for precipitation. The results on potential detectability
of precipitation changes support the findings of Giorgi and Bi (2009), who conclude that in northern
Europe, GHG-induced precipitation changes with respect to the period from 1980 to 1999 are expected
to significantly emerge around 2040.

Potential detectability is higher for guess patterns from a perfect model than for guess patterns from an
imperfect model (light gray versus dark gray lines in figures 5.15 and 5.16). Perfect model guess patterns
and multi-model mean guess patterns, however, perform equally well except for windows of fixed length
with precipitation for which perfect model signals increase potential detectability (lower panel in figure
5.16). Hence, in general, the effect of decreasing noise contamination in the guess pattern with increasing
sample size compensates for the fact that the multi-model mean guess pattern is generally further away
from the true response than the perfect model guess pattern. This is in contradiction to what we find
when analyzing detection of observed temperature changes for which two out of three individual models
perform better than the multi-model mean (all-forcings simulations in figure 5.7).

Potential attribution is much more dependent on the signal used than potential detection. When using
time windows of increasing length (upper panels in figures 5.15 and 5.16), potential attribution with
imperfect model and multi-model mean guess patterns decreases towards the end of the 21 century.
This implies that different models do not agree very well on their regional response to anthropogenic
forcing - which is consistent with the uncertainties in the quantification of climate sensitivity at the
global scale (see chapter 1).

Potential attribution of temperature changes with perfect-model guess patterns approaches the theoretical
upper bound of 90% for the longest time periods (upper panel in fig 5.15). The decrease of potential
attribution of precipitation changes using perfect-model guess patterns for time periods larger than 110
years indicates, that we underestimate the internal variability for these time periods significantly. This
might be either due to the decreasing number of independent segments of the control run available for
longer time periods, due to the pooling of control runs from different models, or due to the preindustrial
variability not being representative for internal variability in a climate with strong GHG forcing.

Potential attribution results indicate that we expect precipitation changes to be consistent with anthro-
pogenic forcing for the period from 1953 to 2007. However, this is not the case for observed precipita-
tion. Thus, we conclude that potential attribution further supports above findings that either the models
lack important forcings and processes or the models underestimate anthropogenic precipitation change
considerably at the regional scale.

5.7 Conclusions

We are able to detect an external influence on the observed temperature changes in the Baltic Sea catch-
ment. The detection is robust across a variety of space-time resolutions and valid for different time
periods analyzed. The spatial pattern of the change, however, contains little additional information for
the detection of external influences, which corroborates previous findings (Bhend and von Storch, 2009).
Furthermore, the detection result is largely independent of the choice of model from which we derive
the expected climate change signals. Using the multi-model mean pattern as done in this study has the
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advantage of little noise-contamination in the searched-for signal and the longest possible record can be
analyzed. The comparison with detection results using guess patterns from individual models reveals
that detection depends on the guess pattern used and that the multi-model mean pattern is probably not
an optimal choice.

Both the anthropogenic and all-forcings signal fit the observed warming well, indicating that the re-
sponse to natural forcing is rather weak and unimportant in explaining the observed change. Further
insight into the relative importance of the different forcing mechanisms is provided by the two-signal
attribution analysis. For the multi-model mean we find further evidence that anthropogenic forcing is the
dominant forcing for the period from 1953 to 2007, whereas for the period from 1943 to 1997 the relative
importance of the forcings varies considerably across models. We conclude, that the global models do
not agree on the response to natural forcing in the second half of the 20™ century but they agree on the
response to anthropogenic forcing.

We note that regional-scale attribution is difficult as the different signals are often highly correlated and
thus not distinguishable using regression-based detection methods. A potential approach to deal with the
problem of correlated signals is to include additional variables in the analysis, such as jointly attributing
precipitation and temperature changes (in analogy to the approach to regional projections by Tebaldi and
Knutti, 2007).

We also detect an external influence on the observed precipitation changes in the study domain. Two
major caveats, however, reduce the confidence in this finding. First, variability in simulated precipita-
tion is generally lower than the observed variability. Second, the models are not able to reproduce the
magnitude of the observed precipitation change, indicating that present-day GCMs either lack important
additional forcing mechanisms, or that they significantly underestimate the regional-scale precipitation
response to anthropogenic and/or natural forcing.
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This work contributes to the understanding of regional climate change in northern Europe. We have
analyzed recent changes in both near-surface temperature and precipitation in the Baltic Sea catchment
using different approaches. The spatial pattern of the change is investigated using high-resolution gridded
observations and regional climate model data. As the necessary simulations for a formal detection and
attribution analysis are not available, we propose a different approach. We compare the observed change
with climate change projections and assess whether anthropogenic forcing is a plausible explanation of
the observed change. In a second step, we investigate the detectability of an anthropogenic signal in
area-average temperature and precipitation using data from global climate models.

The observed spatial pattern of change in winter precipitation from 1973 to 2002 is consistent with the
pattern derived from regional climate change projections. The observed area-mean increase in precip-
itation, however, is considerably stronger than the simulated response to anthropogenic forcing. The
increase in precipitation in northern Europe goes together with a change in the North Atlantic Oscilla-
tion (NAO) towards more westerly wind situations over the North Atlantic (Hurrell, 1995, Wanner et al.,
2001, Thompson and Wallace, 2001). The observed change in the NAO, however, is not reproduced in
present-day climate models (Osborn, 2004, Stephenson et al., 2006). Therefore, we remove the influ-
ence of the NAO on the observed and simulated changes in precipitation previous to the analysis. The
observed change in the NAO does not fully explain the mismatch between the observed increase in pre-
cipitation and the projected changes. Thus, the following three causes for the mismatch in simulated
and observed rates of change in precipitation may be thought of: changing atmospheric greenhouse gas
and sulfate concentrations are not the dominant forcing and other forcing mechanisms such as changes
in stratospheric aerosol concentrations due to volcanic eruptions have a major impact on precipitation in
this period, the modeling system is significantly flawed in its ability to predict the precipitation response
to anthropogenic forcing, or the observed trend is strongly influenced by internal variability.

In a formal detection analysis using data from global climate models, we find that the observed change
in area-average precipitation from 1953 to 2007 is very likely not due to internal variability alone. How-
ever, neither the response to anthropogenic forcing (GHG and sulfate) nor the response to natural forcing
(solar irradiance and volcanic aerosol changes), as derived from GCMs alone, provides a plausible ex-
planation for the observed change. Furthermore, we note that most GCMs significantly underestimate
precipitation variability. Although we inflate model derived variability accordingly, we recommend to
interpret detection of an externally forced change in precipitation with caution.

Area-average temperature trends from 1973 to 2002 are consistent with estimates of the anthropogenic
signal derived from regional climate change projections. Increasing the spatiotemporal resolution, how-
ever, decreases the similarity of the simulated and observed patterns of change. In addition, the anthro-
pogenic signal derived from regional climate model simulations is fairly uniform, indicating that the
projected warming is not strongly modified locally.

We assess the relative importance of different possible explanations for the observed change in area-
average temperature in a detection and attribution analysis. The observed warming is very likely not
due to internal variability alone. The hypothesized response to anthropogenic forcing as derived from
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different models is consistent with the observed warming, whereas the response to natural forcing alone is
not consistent. Although this indicates that anthropogenic forcing is the dominant forcing in the second
half of the 20 century, formal attribution — the quantitative separation of the influence of competing
forcing mechanisms — is not possible. The relative importance of anthropogenic and natural forcing
cannot be further quantified in a two-signal analysis (as done by Stott et al., 2006) due to three main
reasons:

First, the low signal-to-noise ratio of externally forced changes compared to internal variability in the
Baltic Sea catchment inhibits a formal attribution of anthropogenic or natural forcing in a two-signal
analysis. Due to the increasing anthropogenic forcing, however, attribution of the observed warming to
human influence will become possible in the near future. This is further supported by detection analyses
using simulated data as pseudo-observations.

Second, the regional-scale response to natural forcing is not well known and varies considerably across
models. The natural response as derived from multi-model ensembles thus tends to be weak and the
natural response as derived from individual models is often far away from the true response — both cases
lead to large uncertainty ranges about the best-fit scaling of the natural guess pattern in regression based
detection analyses.

Third, the response to different forcings can often not be clearly distinguished at the regional scale, as
the guess patterns are correlated. Correlation of natural and anthropogenic guess patterns leads to very
wide confidence ellipsoids in a two-signal analysis. A potential improvement could be achieved through
the joint analysis of different variables such as precipitation and temperature. Due to the limited skill in
simulating precipitation changes, however, only marginal improvements may be expected.

We explicitly include the influence of internal variability and uncertainty in the magnitude of the response
to different forcings in the detection and attribution analysis. The uncertainty due to systematic model
biases and the uncertain temporal evolution of the forcings, however, are not taken into account. A
generalization of the regression-based detection and attribution analysis that uses inter-model variance
of the guess patterns as an extra uncertainty has been developed and successfully applied at the global
scale (Huntingford et al., 2006). Given the strong inter-model variability of model derived responses at
the regional scale, explicit treatment of the uncertainty in the guess patterns is certainly an important
issue for future regional-scale detection and attribution studies.

Adding additional sources of uncertainty in the analysis tends to further decrease the already low signal-
to-noise ratio at the regional scale and successful detection and attribution is thus further complicated.
On the other hand, there is room for improvement of the detectability of external changes at the regional
scale. A few strategies with the potential to increase the signal-to-noise ratio at the regional scale are
outlined below.

Inclusion of information from global-scale detection and attribution analyses in regional analyses could
help to better constrain the regional results. For example, in a Bayesian formulation of the detection and
attribution problem as proposed by Hasselmann (1998) and Schnur and Hasselmann (2005), global-scale
information could be included as prior probabilities on the scaling factors for individual guess patterns.
A caveat of this strategy is that for regions with very low signal-to-noise ratio, the outcome of a detection
analysis is based almost exclusively on the global-scale information (S.Leroy, personal communication).
Interpretation and communication of findings about regional quantities based on data from outside the
region is expected to be difficult.
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Further development of climate models used to infer about regional changes helps to decrease the uncer-
tainties in the guess patterns and thus increase the detectability of externally forced changes.

Simulations of multi-thousand ensembles of models, at present mainly used to assess the influence of
model formulation on climate change projections (Piani et al., 2005, 2007), could be used either to reduce
the uncertainties in the guess patterns or to explicitly deal with any of the above mentioned sources of
uncertainty at the simulation level.

The use of quantities that describe the modification of the global-scale signals at the regional scale
more generally could help to reduce inter-model differences in the response to different forcings. Good
and Lowe (2006) analyze the difference between the regional area-average precipitation response to
increasing GHG concentrations and minimum and maximum responses at the grid box level within a
region and find that the ratio of small-scale trends to the area-average trends are very similar across
models.

In addition to the suggestions listed above, the increasing anthropogenic forcing in the foreseeable future
and the resulting strengthening of the signal will further help to reduce uncertainties in our understanding
of regional climate change. Better understanding of regional climate change and the resulting confidence
in regional projections in turn will help to prepare for the potentially harmful or beneficial effects of
climate change.

69






ACKNOWLEDGEMENTS

First and foremost I would like to thank my advisor Hans von Storch for the inspiring time, for stimu-
lating discussions, and for the encouragement to present my work all over the world. Many thanks go
also to Burkhardt Rockel, my second advisor and first-line superior, for patiently granting last minute
requests and for introducing me to the wonders of regional climate modelling. Furthermore, I would like
to thank Jochem Marotzke, my panel chair, for his encouraging words in the annual panel meetings.

This study contributes to the GEWEX-BALTEX programme. The regional climate model simulations
have been provided through the PRUDENCE data archive, funded by the EU through contract EVK2-
CT2001-00132. We acknowledge the modeling groups, the Program for Climate Model Diagnosis and
Intercomparison (PCMDI) and the WCRP’s Working Group on Coupled Modelling (WGCM) for their
roles in making available the WCRP CMIP3 multi-model dataset. Furthermore, we thank Peter Stott and
Toru Nozawa for providing additional simulations with the HadCM3 and MIROC3.2 models.

The gridded high-resolution precipitation and temperature observations and the gridded low-resolution
temperature observations have been provided by the Climatic Research Unit. The gridded low-resolution
precipitation observations have been provided by the Global Precipitation Climatology Centre operated
by Deutscher Wetterdienst (DWD, National Meteorological Service of Germany).

We thank the International Detection and Attribution Group for challenging comments on the work
and for the possibility to present these findings at the annual meetings of the group. The R-code (R
Development Core Team, 2008) used to carry out the detection and attribution analysis is based on the
optimal detection package provided by Myles Allen and D4ithi Stone. Furthermore, I thank Christoph
Knote for help with the parallelization of the detection and attribution analysis.

We thank Gabi Hegerl and an anonymous reviewer for valuable comments on the manuscript of chapter
3 and two anonymous reviewers for valuable comments on the manuscript of chapter 4.

I gratefully acknowledge the countless helpful discussions on and off topic with the members of the
regional climate modelling group at the GKSS research institute. Special thanks go to Beate for insisting
on standard-compliant NetCDF. Furthermore, I would like to thank Nadine, Nik, and Bernd for taking
me for countless rides to and from the institute and I thank them and their passengers for the fun we
had.

Special thanks go to my companions in misfortune, Antonia and Ivonne, who never let pass an opportu-
nity to cheer me up. Thank you.

Monika, Ute, Kirsten, Heike, Mimi, Flo and their friends did the best to make me feel at home from the
very beginning of my stay in Hamburg. Thank you all for the wonderful time.

I would like to thank my parents for their never-ending support and encouragement.

Finally, my deepest thanks go to Helen for the balancing effect during the ups and downs of my PhD, for
the challenging “crucial questions”, and most of all for the patience needed in a long-distance relationship
with a nerd.

71






ABBREVIATIONS
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AOGCM
BALTEX
CMIP3
CRU

DWD
ENSEMBLES
ENSO

EOF

GCM
GEWEX
GHG
GPCC
IPCC

IPCC SRES
NAO

NAT

OLS

PCC
PCMDI
PRUDENCE

RCAO
RCM
SLP
SMHI
TLS
WCRP
WGCM

Ensemble mean of simulations with anthropogenic and natural forcing
Ensemble mean of simulations with anthropogenic forcing only
Coupled Atmosphere-Ocean General Circulation Model

The Baltic Sea Experiment

Coupled Model Intercomparison Project

Climatic Research Unit

Deutscher Wetterdienst

Ensembles-Based Predictions of Climate Changes and Their Impacts
El Nifio-Southern Oscillation

Empirical Orthogonal Function

General Circulation Model

Global Energy and Water Cycle Experiment

Greenhouse gases

Global Precipitation Climatology Centre

Intergovernmental Panel on Climate Change

IPCC Special Report on Emissions Scenarios

North Atlantic Oscillation

Ensemble mean of simulations with natural forcing only

Ordinary Least Squares

Pattern Correlation Coefficient

Program for Climate Model Diagnosis and Intercomparison
Prediction of Regional scenarios and Uncertainties for Defining EuropeaN Climate
change risks and Effects

Rossby Centre Regional Atmosphere-Ocean Model

Regional Climate Model

Sea Level Pressure

Swedish Meteorological and Hydrological Institute

Total Least Squares

World Climate Research Programme

Working Group on Coupled Modelling
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